Comptes Rendus
Research article
Doppler effect considered as a distortion of time, application to an engineering case
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 863-877

The ground-based listening of aircraft, rockets, or space launchers, and the simulation of recorded acoustic spectra with a view to civilian or military applications, raise the problem of the distortion by the Doppler effect of the spectrum emitted by the sound sources, in addition to other problems related to the sound propagation in atmosphere. We propose a solution to the direct problem—the characteristics of the sound source and its trajectory are known—based on an original time approach to the Doppler effect. This study shows in fact that it is not necessary to distinguish between frequency and sound level variations, both being directly related to the ratio of the emission to the reception durations of a chosen signal sequence. The developed method has a character of generality and can be applied without restriction in most cases (e.g. variable speed of the mobile, curved trajectory, atmosphere with wind and temperature gradients) using an acoustic propagation code, but remains obviously applicable in an isotropic environment to simple or complex cases, for example when the observer is moving.

L’écoute au sol d’avions, de fusées ou de lanceurs spatiaux, ainsi que la simulation de spectres acoustiques enregistrés en vue d’applications civiles ou militaires, soulèvent le problème de la distorsion par effet Doppler du spectre émis par les sources sonores, en plus d’autres problèmes liés à la propagation du son dans l’atmosphère. Nous proposons une solution au problème direct – les caractéristiques de la source sonore et sa trajectoire étant connues – basée sur une approche temporelle originale de l’effet Doppler. Cette étude montre en effet qu’il n’est pas nécessaire de distinguer les variations de fréquence et de niveau sonore, toutes deux étant directement liées au rapport des durées d’émission et de réception d’une séquence de signaux choisie. La méthode développée présente un caractère général et peut être appliquée sans restriction dans la plupart des cas (par exemple, vitesse variable du mobile, trajectoire courbe, atmosphère avec gradients de vent et de température) à l’aide d’un code de propagation acoustique, mais est évidemment applicable en environnement isotrope à des cas simples ou complexes, par exemple lorsque l’observateur est en mouvement.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.312
Keywords: Aeroacoustics, Doppler effect, Time approach, Sound power spectrum, Sonic boom, Atmospheric propagation
Mots-clés : Aéroacoustique, Effet Doppler, Approche temporelle, Spectre de puissance acoustique, Bang sonique, Propagation atmosphérique

Jean Varnier 1, 2

1 French Aeronautical and Astronautical Association, 3AF, 75016 Paris, France
2 National Office for Aerospace Studies and Research, ONERA, 92320 Châtillon, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2025__353_G1_863_0,
     author = {Jean Varnier},
     title = {Doppler effect considered as a distortion of time, application to an engineering case},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {863--877},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     doi = {10.5802/crmeca.312},
     language = {en},
}
TY  - JOUR
AU  - Jean Varnier
TI  - Doppler effect considered as a distortion of time, application to an engineering case
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 863
EP  - 877
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.312
LA  - en
ID  - CRMECA_2025__353_G1_863_0
ER  - 
%0 Journal Article
%A Jean Varnier
%T Doppler effect considered as a distortion of time, application to an engineering case
%J Comptes Rendus. Mécanique
%D 2025
%P 863-877
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.312
%G en
%F CRMECA_2025__353_G1_863_0
Jean Varnier. Doppler effect considered as a distortion of time, application to an engineering case. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 863-877. doi: 10.5802/crmeca.312

[1] J. Varnier Doppler effect in aeroacoustics, J. Acoust. Soc. Am., Volume 123 (2008) no. 5, p. 3248 | DOI

[2] D. D. Nolte The fall and rise of the Doppler effect, Phys. Today, Volume 73 (2020) no. 3, pp. 30-35 | DOI

[3] P. M. Morse; K. U. Ingard Theoretical Acoustics, Sound Emission from Moving Sound Sources, McGraw-Hill Book Co., New York, 1968, pp. 717-736

[4] T. P. Gill The Doppler Effect - An Introduction to the Theory of the Effect, Logos Press Ltd., Academic Press Inc., London, 1965

[5] J. Lamirand; M. Joyal Physique, Mathématiques & Sciences Expérimentales, Masson et Cie, Paris, 1964

[6] E. Esclangon; P. Charbonnier L’acoustique des canons et des projectiles. Etude cinématique du champ acoustique d’un projectile, Mémorial de l’Artillerie Française, vol. 4, Imprimerie Nationale, Editions Gauthier-Villars et Cie, Paris, 1925 (3 e ´me fascicule)

[7] F. Coulouvrat Le bang sonique, Pour la Sci. (2001), pp. 24-29 (Special Issue “Le Monde des Sons”)

[8] T. Walsh The Doppler effect and sonic boom, Physics: Interactive Physics Simulations, Waves, Circa, 2020 https://ophysics.com/waves11.html (Accessed 2025-04-30)

[9] J. Varnier Sonic boom, jet noise and Doppler effect, Acoust. Pract. EAA, Volume 1 (2013) no. 2, pp. 7-15

[10] G. A. Wilhold; S. H. Guest; J. H. Jones A technique for predicting far-field acoustic environments due to a moving rocket sound source (1963) (ISSN 0499-9339) (NASA Technical Note D-1832)

[11] J. R. Stone Interim prediction method for jet noise (1974) no. 19740027003 (NASA Technical Memorandum, NASA TM X-71618)

[12] R. H. Burrin; K. K. Ahuja; M. Salikuddin High speed flight effects on noise propagation, AIAA-87-0013, 25th AIAA Aerospace Sciences Meeting, Reno, NV, USA, 24–26 March 1987, AIAA Research Central, arc.aiaa.org, 1987 | DOI

[13] P. Drevet; J. P. Duponchel; J. R. Jacques The effect of flight on jet noise as observed on the Bertin Aérotrain, J. Sound Vib., Volume 54 (1977) no. 2, pp. 173-201 | DOI

[14] M. Snellen; R. Merio-Martinez; D. G. Simons Assessment of noise variability of landing aircraft using phased microphone array, J. Aircr., Volume 54 (2017) no. 6, pp. 2173-2183 | DOI

[15] G. Ménéxiadis; J. Varnier Long-range propagation of sonic boom from the Concorde airliner: analyses and simulations, J. Aircr., Volume 45 (2008) no. 5, pp. 1612-1618 | DOI

[16] J. Varnier Experimental study and simulation of rocket engine free jet noise, AIAA J., Volume 39 (2001) no. 10, pp. 1851-1859 | DOI

[17] J. Vermorel Extension du principe de Fermat à un milieu en mouvement (1987) no. RT 506/87 (Technical Report)

Cited by Sources:

Comments - Policy