Les campagnes en vol des années 1980 ont montré deux mécanismes intervenant lors du foudroiement d’un avion. L’un correspond à l’interception d’un éclair naturel par l’avion et l’autre, au déclenchement de l’éclair par l’avion lui-même. Dans ce dernier cas, deux traceurs foudre se forment depuis les zones de renforcement du champ électrique atmosphérique sur l’avion. Après cette phase durant laquelle l’avion s’est peu déplacé, l’éclair poursuit son développement pendant une durée d’environ 1 seconde. Les canaux de l’éclair restent immobiles dans l’air, tandis que l’avion continue d’avancer. Le pied d’arc se déplace alors à la surface de l’avion pour compenser l’avancée de l’aéronef.
Le retour d’expérience des avionneurs et des compagnies aériennes révèle que, dans la grande majorité des cas, le foudroiement se produit durant les phases d’approche, de descente ou de décollage. Seulement 8 % des foudroiements entraînent des effets jugés importants sur l’avion, car ils impactent des éléments critiques. Le foudroiement d’un avion produit les effets directs et indirects sur l’appareil.
Pour garantir la sécurité d’un avion, les autorités de l’aviation civile exigent qu’un avion civil soit protégé à la foudre pour être certifié et résister à des courants impulsionnels de 200 kA.
L’allégement des avions par l’utilisation des matériaux composites conduit à une meilleure compréhension de l’interaction de la foudre avec ces matériaux et avec les nouvelles géométries d’aéronefs. Cela permettra d’élaborer des solutions techniques optimisées du point de vue de la masse, des marges de conception, des délais et coûts de développement et de certification.
In-flight campaigns in the 1980s revealed two mechanisms involved in aircraft lightning strikes. One corresponds to the interception of natural lightning by the aircraft, and the other to the triggering of lightning by the aircraft itself. In the latter case, two lightning leaders form from areas of atmospheric electric field enhancement on the aircraft. After this phase, during which the aircraft has moved little, the lightning continues to develop for approximately 1 second. The lightning channels remain stationary in the air, while the aircraft continues to advance. The arc foot then moves along the surface of the aircraft to compensate for the aircraft’s forward motion.
Feedback from aircraft manufacturers and airlines indicates that, in the vast majority of cases, lightning strikes occur during the approach, descent, or takeoff phases. Only 8% of lightning strikes cause effects deemed significant on the aircraft, as they impact critical components. A lightning strike on an aircraft produces both direct and indirect effects on the airframe.
To ensure aircraft safety, civil aviation authorities require civil aircraft to be lightning-protected to be certified and to withstand impulse currents of 200 kA.
The lightening of aircraft through the use of composite materials necessitates a better understanding of lightning’s interaction with these materials and with new aircraft geometries. This will allow for the development of optimized technical solutions in terms of mass, design margins, and development and certification timelines and costs.
Révisé le :
Accepté le :
Publié le :
Keywords: Lightning, Aircraft, Protection
Philippe Lalande 1
CC-BY 4.0
@article{CRMECA_2025__353_G1_1127_0,
author = {Philippe Lalande},
title = {Le foudroiement des avions~: compr\'ehension, impacts et protection},
journal = {Comptes Rendus. M\'ecanique},
pages = {1127--1153},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.324},
language = {fr},
}
Philippe Lalande. Le foudroiement des avions : compréhension, impacts et protection. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1127-1153. doi: 10.5802/crmeca.324
[1] De l’électricité des végétaux : ouvrage dans lequel on traite de l’électricité de l’atmosphère sur les plantes, de ses effets sur l’économie des végétaux, de leurs vertus médico & nutritivo-électriques, & principalement des moyens de pratique de l’appliquer utilement à l’agriculture, avec l’invention d’un électro-végétomètre, Didot, Paris, 1783 http://archive.org/details/dellectrici00bert (Accessed 2025-04-24)
[2] De viribus electricitatis in motu musculari commentarius, Volume VII des Commentarii de Bononiensi Scientiarum et Artium Instituto atque Academia, Typographia Instituti Scientiarium, Bologna, 1791
[3] XVII. On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K.B. P. R. S, 1832 https://royalsocietypublishing.org/... (Accessed 2025-04-24)
[4] Experiments and observations on electricity, made at Philadelphia in America. London : Printed and sold by E. Cave, at St. John’s Gate, 1751 http://archive.org/... (Accessed 2025-04-24)
[5] et al. Confronting the challenge of modeling cloud and precipitation microphysics, J. Adv. Model. Earth Syst., Volume 12 (2020) no. 8, e2019MS001689 | DOI
[6] Charge separation mechanisms in clouds, Space Sci. Rev., Volume 137 (2008) no. 1–4, pp. 335-353 | DOI
[7] Electrical structure in thunderstorm convective regions : 3. Synthesis, J. Geophys. Res. : Atmos., Volume 103 (1998) no. D12, pp. 14097-14108 | DOI
[8] Electric field magnitudes and lightning initiation in thunderstorms, J. Geophys. Res. : Atmos., Volume 100 (1995) no. D4, pp. 7097-7103 | DOI
[9] Lightning Protection, Edward Arnold, London, 1973
[10] The Lightning Discharge, Academic Press, Orlando, FL, 1987
[11] Positive discharges in long air gaps at Les Renardières – 1975 results and conclusions, Electra, Volume 53 (1977)
[12] Negative discharges in long air gaps at Les Renardières – 1978 results, Electra, Volume 53 (1977)
[13] Mechanisms of high-current pulses in lightning and long-spark stepped leaders, J. Appl. Phys., Volume 72 (1992) no. 5, pp. 1729-1739 | DOI
[14] Etude expérimentale et modélisation de mécanismes physiques de l’étincelle glissante, Thèse de doctorat (1985) https://theses.fr/1985PA112375 (Accessed 2024-10-08)
[15] Lightning parameters for engineering application, CIGRE Electra, Volume 69 (1980), pp. 65-102
[16] A contribution to the electrostatic theory of a lightning discharge, J. Geophys. Res. (1896–1977), Volume 65 (1960) no. 7, pp. 1873-1878 | DOI
[17] Interferometric directions of lightning sources at 34 MHz, J. Geophys. Res., Volume 84 (1979), pp. 2457-2468 | DOI
[18] Characteristics of lightning VHF radiation near the time of return strokes, J. Geophys. Res., Volume 89 (1984), pp. 1403-1410 | DOI
[19] Results of spatial and temporal characterization of the VHF-UHF radiation of lightning, J. Geophys. Res., Volume 91 (1986) no. D1, pp. 1248-1260 | DOI
[20] Observations of lightning phenomena using radio interferometry, J. Geophys. Res. : Atmos., Volume 99 (1994) no. D6, pp. 13059-13082 | DOI
[21] Broad band radio interferometry for lightning observations, Geophys. Res. Lett., Volume 23 (1996) no. 15, pp. 1917-1920 | DOI
[22] Broad band interferometric measurement of rocket triggered lightning in Japan, Geophys. Res. Lett., Volume 24 (1997) no. 22, pp. 2769-2772 | DOI
[23] Broadband and narrowband RF interferometers for lightning observations, Geophys. Res. Lett., Volume 27 (2000), pp. 3189-3192 | DOI
[24] Observations of VHF source radiated by lightning using short baseline technology, 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ (2010), pp. 1162-1165 | DOI
[25] Continuous broadband digital interferometry of lightning using a generalized cross-correlation algorithm, J. Geophys. Res. : Atmos., Volume 119 (2014) no. 6, pp. 3134-3165 | DOI
[26] Needles and lightning leader dynamics imaged with 100–200 MHz broadband VHF interferometry, Geophys. Res. Lett., Volume 46 (2019) no. 22, pp. 13556-13563 | DOI
[27] VHF radio pictures of cloud flashes, J. Geophys. Res. : Oceans, Volume 86 (1981) no. C5, pp. 4041-4071 | DOI
[28] LDAR system performance and analysis, paper presented at International, Présenté à Conference on Cloud Physics, Dallas, Tex, American Meteorological Society, Boston, MA (1995)
[29] A GPS-based three-dimensional lightning mapping system : initial observations in central New Mexico, Geophys. Res. Lett., Volume 26 (1999) no. 23, pp. 3573-3576 | DOI
[30] Accuracy of the lightning mapping array, J. Geophys. Res. : Atmos., Volume 109 (2004) no. D14, D14207 | DOI
[31] Final results of the nasa storm hazards program, International Aerospace and Ground Conference on Lightning and Static Electricity, Oklahoma City, OK, USA, 1988
[32] Triggered lightning strikes to aircraft and natural intracloud discharges, J. Geophys. Res. : Atmos., Volume 94 (1989) no. D3, pp. 3311-3325 | DOI
[33] Aircraft lightning initiation and interception from in situ electric measurements and fast video observations, J. Geophys. Res. : Atmos., Volume 97 (1992) no. D14, pp. 15903-15912 | DOI
[34] Airborne measurements of electrical atmospheric field produced by convective clouds, Rev. Phys. Appl. (Paris), Volume 21 (1986) no. 12, pp. 809-815 | DOI
[35] ED-84A - Aircraft lightning environment and related test waveforms, 2013 https://www.eurocae.net/... (Accessed 2025-10-28)
[36] ED-91A - Lightning Zoning, 2019 https://www.eurocae.net/... (Accessed 2025-10-28)
Cité par Sources :
Commentaires - Politique
