[Interaction d'un éclair et d'un avion en vol]
En moyenne, chaque avion de ligne est foudroyé une fois par an. Le foudroiement d'un appareil n'est donc pas exceptionnel et constitue une menace non négligeable pour la sécurité des vols. La compréhension du processus de foudroiement a considérablement progressé ces dernières années, grâce à l'analyse exhaustive des données enregistrées à bord d'avions instrumentés volant dans des zones orageuses. Dans cet article, nous nous appuyons sur la description phénoménologique du foudroiement d'un appareil pour approfondir les bases physiques des différentes phases de l'éclair sur avion.
Roughly speaking, every commercial airliner is struck by lightning once per year. Thus, the lightning strike to aircraft is not uncommon and it poses an appreciable threat to flight safety. The understanding of the lightning strike to aircraft has been greatly enhanced during the last years thanks to a comprehensive analysis of data collected from instrumented aircraft that have been flown into thunderstorm regions. In this article, we will start with the phenomenology of the lightning strike to aircraft and continue with going deeper into the underlying physics of selected processes during the strike.
Mots-clés : éclair, avion, leader, arc
Anders Larsson 1
@article{CRPHYS_2002__3_10_1423_0, author = {Anders Larsson}, title = {The interaction between a lightning flash and an aircraft in flight}, journal = {Comptes Rendus. Physique}, pages = {1423--1444}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01410-X}, language = {en}, }
Anders Larsson. The interaction between a lightning flash and an aircraft in flight. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1423-1444. doi : 10.1016/S1631-0705(02)01410-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01410-X/
[1] B. Fisher, R. Taeuber, K. Crouch, Implications of a recent lightning strike to a NASA jet trainer, AIAA Paper 88-0394, AIAA 26th Aerospace Sciences Meeting, Reno, USA, 1988
[2] Ch. Jones, D. Rowse, G. Odam, Probabilities of catastrophe in lightning hazard assessments, Paper No 2001-01-2877, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001
[3] M. Severin, B. Wahlgren, The European project EM-Haz: A consolidated approach to the electromagnetic threat, Paper No 2001-01-2878, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001
[4] Lightning threat to aircraft: do we know all we need to know?, J. Aircraft, Volume 30 (1993), pp. 156-159
[5] B. Fisher, P. Brown, A. Plumer, A. Wunschel, Final results of the NASA storm hazards program, Int. Aerospace and Ground Conf. on Lightning and Static Electricity, Oklahoma, USA, NOAA Special Report, 1988
[6] Analysis of correlated electromagnetic field and current pulses during airborne lightning attachments, Electromagnetics, Volume 7 (1987), pp. 509-539
[7] Aircraft lighting initiation and interception from in situ electric measurements and fast video observations, J. Geophys. Res., Volume 97 (1992), pp. 903-912
[8] F. Uhlig, C. Jones, M. Vile, B. Tagliana, Setup and statistical analysis of an database on in-flight lightning strike incidents, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[9] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Analysis of available in-flight measurements of lightning strikes to aircraft, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[10] Triggered lightning, IEEE Trans. Electromagn. Compatibility, Volume 24 (1982), pp. 112-122
[11] Lightning strikes to an airplane in a thunderstorm, J. Aircraft, Volume 21 (1984), pp. 607-611
[12] Laboratory study of the bi-leader process from an electrically floating conductor – Part 1: General results, IEE Proc. Sci. Meas. Technol., Volume 145 (1998), pp. 185-192
[13] Laboratory study of the bi-leader process from an electrically floating conductor – Part 2: Bi-leader properties, IEE Proc. Sci. Meas. Technol., Volume 145 (1998), pp. 193-199
[14] Physical processes during development of lightning flashes, C. R. Physique, Volume 3 (2002), pp. 1393-1409
[15] H. Zaglauer, W. Wulbrand, A. Douay, F. Uhlig, C. Jones, K. Clibbon, A. Ulmann, P. Lalande, A. Bondiou-Clergerie, P. Laroche, Definition of lightning strike zones on aircraft and helicopters – results of the FULMEN program, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[16] The lightning swept stroke along an aircraft in flight. Part I: thermodynamic and electric properties of lightning arc channels, J. Phys. D, Volume 33 (2000), pp. 1866-1875
[17] The lightning swept stroke along an aircraft in flight. Part II: numerical simulations of the complete process, J. Phys. D, Volume 33 (2000), pp. 1876-1883
[18] A. Larsson, A. Bondiou-Clergerie, P. Lalande, A. Delannoy, S. Dupraz, New methodology for determining the extension of lightning swept stroke zones on airborne vehicles, Paper No 2001-01-2876, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001
[19] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Computation of the initial discharge initiation zones on aircraft or helicopter, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[20] I. Coton, B. McNiff, T. Soerensen, W. Zischank, P. Christiansen, M. Hoppe-Klipper, S. Ramakers, P. Pettersson, E. Muljadi, Lightning protection for wind turbines, Paper No 9.13, 25th Int. Conf. on Lightning Protection, Rhodes, Greece, 2000
[21] Physical Fluid Dynamics, Clarendon Press, Oxford, 1988
[22] IEC 61312-1, Protection against lightning electromagnetic impulse – Part 1: General principles, 1995
[23] Electromagnetic pulse environment of cloud-to-ground lightning for EMC studies, IEEE Trans. Electromagn. Compatibility, Volume 44 (2002), pp. 203-213
[24] Lightning Physics and Lightning Protection, Institute of Physics, Bristol, 2000
[25] Thermodynamic decay of the leader channel after the discharge arrest, IEE Proc. A, Volume 133 (1986), pp. 431-437
[26] Decay of electrical conductance and temperature of arc plasmas, J. Appl. Phys., Volume 44 (1973), pp. 3513-3523
[27] Effect of continuous current during pauses between successive strokes on the decay of the lightning channel, Plasma Phys. Rep., Volume 26 (2000), pp. 952-960
[28] Principles of arc motion and displacement, Proc. IEEE, Volume 59 (1971), pp. 439-449
[29] Time interval between lightning strokes and the initiation of dart leaders, J. Geophys. Res., Volume 73 (1968), pp. 497-506
[30] Modelling of high intensity arcs including non-equilibrium description of the cathode sheath, J. Phys. Coll. C5, Volume 51 (1990), pp. 199-206
[31] Gas Discharge Physics, Springer-Verlag, Berlin, 1999
[32] Non equilibrium modelling of tranferred arcs, J. Phys. D, Volume 32 (1999), pp. 263-272
[33] Thermalisierung und zeitliche Entwicklung der Elektonendichte und Temperatur von Funkenkanälen in Wasserstoff, Z. Naturforsch, Volume 25a (1970), pp. 420-429
[34] Three-dimensional modelling of unsteady high-pressure arcs in argon, J. Phys. D, Volume 28 (1995), pp. 2294-2305
[35] Comparison between a two- and a three-dimensional arc plasma configuration, J. Phys. D, Volume 33 (2000), pp. 2442-2452
[36] Physics of an arc in cross flow, J. Phys. D, Volume 33 (2000), pp. 2172-2182
[37] Shock waves from line sources. Numerical solutions and experimental measurements, Phys. Fluids, Volume 13 (1970), pp. 2665-2675
[38] Numerical simulation of spark discharges in air, Phys. Fluids, Volume 14 (1971), pp. 2111-2123
[39] Numerical model of the return stroke of the lightning discharge, Phys. Fluids, Volume 14 (1971), pp. 2124-2133
[40] Classical Electrodynamics, Wiley, New York, 1975
[41] Physics of High Temperature Plasma, Academic Press, New York, 1979
[42] Convective cooling of lightning channels, J. Atmospheric Sci., Volume 38 (1981), pp. 2056-2062
[43] Arc modelling in SF6 circuit breakers, IEE Proc. Sci. Meas. Technol., Volume 142 (1995), pp. 189-196
[44] G.R. Jones, High current arcs at high pressures, XVI Int. Conf. on Phenomena in Ionized Gases, Düsseldorf, Germany, 1983
[45] The mechanism of the long spark formation, J. Phys. Coll. C7, Volume 40 (1979), pp. 193-250
[46] Ionized Gases, Clarendon Press, Oxford, 1955
[47] Three dimensional behaviour analysis of DC free arc column by image processing technique, Paper No A41, XIII Int. Conf. on Gas Discharges and their Applications Glasgow, UK, 2000
[48] Electric and moving characteristics of DC kiloampere high-current arcs in atmospheric air, Elec. Engrg. Japan, Volume 110 (1990) no. 1, pp. 9-20
[49] An approximative model of an electric arc in transverse mutually perpendicular aerodynamic and magnetic fields, J. Engrg. Phys., Volume 35 (1978), pp. 1424-1429
[50] Heat string model of bi-dimensional DC glidarc, J. Phys. D, Volume 33 (2000), pp. 2407-2419
[51] Cathode spots of electric arcs, J. Phys. D, Volume 34 (2001), p. R103-R123
[52] Electric arcs: their electrode processes and engineering applications, IEE Proc., Volume 121 (1984) no. 7, pp. 450-480 (Part A)
[53] R. Brocke, F. Noack, F. Reichert, J. Schoenau, W. Zischank, The numerical simulation on the effects of lightning current arcs at the attachment point, Paper No 2001-01-2873, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001
[54] 3D modelling of the heating of a metal sheet by a moving arc: application to aircraft lightning protection, Eur. Phys. J., Volume 11 (2000), pp. 197-204
[55] L.L. Oh, S.D. Schneider, Lightning strike performance of thin metal skin, Conf. on Lightning and Static Electricity, Culham, UK, 1975
[56] A. Bizyaev, M. Bourmistrov, L. Levitova, V. Noskov, E. Prokhorov, E. Sobolevskaya, K. Sokolov, T. Tarasova, A. Douay, B. Tagliana, F. Uhlig, Investigation of the sweeping of lightning in wind blown arc experiments, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[57] A. Castellani, Calcul du champ électrique par la méthode des charges equivalentes pour la simulation d'une déchage bi-leader, Thèse de doctorat, Université d'Orsay, Paris, France, 1995
[58] Theoretical modelling of the development of the positive spark in long gaps, J. Phys. D, Volume 27 (1994), pp. 1252-1266
[59] Spark Discharge, CRC Press, Boca Raton, 1998
[60] J.A. Dobbing, A.W. Hanson, A swept stroke experiment with a rocket sled, Int. Symp. on Electromagnetic Compatibility, Atlanta, USA, 1978
[61] Boundary-Layer Theory, McGraw-Hill, New York, 1968
Cité par Sources :
Commentaires - Politique