Comptes Rendus
Mécanismes physiques du nuage d'orage et de l'éclair/The physics of thundercloud and lightning discharge
The interaction between a lightning flash and an aircraft in flight
[Interaction d'un éclair et d'un avion en vol]
Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1423-1444.

En moyenne, chaque avion de ligne est foudroyé une fois par an. Le foudroiement d'un appareil n'est donc pas exceptionnel et constitue une menace non négligeable pour la sécurité des vols. La compréhension du processus de foudroiement a considérablement progressé ces dernières années, grâce à l'analyse exhaustive des données enregistrées à bord d'avions instrumentés volant dans des zones orageuses. Dans cet article, nous nous appuyons sur la description phénoménologique du foudroiement d'un appareil pour approfondir les bases physiques des différentes phases de l'éclair sur avion.

Roughly speaking, every commercial airliner is struck by lightning once per year. Thus, the lightning strike to aircraft is not uncommon and it poses an appreciable threat to flight safety. The understanding of the lightning strike to aircraft has been greatly enhanced during the last years thanks to a comprehensive analysis of data collected from instrumented aircraft that have been flown into thunderstorm regions. In this article, we will start with the phenomenology of the lightning strike to aircraft and continue with going deeper into the underlying physics of selected processes during the strike.

Publié le :
DOI : 10.1016/S1631-0705(02)01410-X
Keywords: lightning discharge, aircraft, leader, arc
Mots-clés : éclair, avion, leader, arc

Anders Larsson 1

1 FOI – Swedish Defence Research Agency, Grindsjön Research Centre, 14725 Tumba, Sweden
@article{CRPHYS_2002__3_10_1423_0,
     author = {Anders Larsson},
     title = {The interaction between a lightning flash and an aircraft in flight},
     journal = {Comptes Rendus. Physique},
     pages = {1423--1444},
     publisher = {Elsevier},
     volume = {3},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01410-X},
     language = {en},
}
TY  - JOUR
AU  - Anders Larsson
TI  - The interaction between a lightning flash and an aircraft in flight
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 1423
EP  - 1444
VL  - 3
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01410-X
LA  - en
ID  - CRPHYS_2002__3_10_1423_0
ER  - 
%0 Journal Article
%A Anders Larsson
%T The interaction between a lightning flash and an aircraft in flight
%J Comptes Rendus. Physique
%D 2002
%P 1423-1444
%V 3
%N 10
%I Elsevier
%R 10.1016/S1631-0705(02)01410-X
%G en
%F CRPHYS_2002__3_10_1423_0
Anders Larsson. The interaction between a lightning flash and an aircraft in flight. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1423-1444. doi : 10.1016/S1631-0705(02)01410-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01410-X/

[1] B. Fisher, R. Taeuber, K. Crouch, Implications of a recent lightning strike to a NASA jet trainer, AIAA Paper 88-0394, AIAA 26th Aerospace Sciences Meeting, Reno, USA, 1988

[2] Ch. Jones, D. Rowse, G. Odam, Probabilities of catastrophe in lightning hazard assessments, Paper No 2001-01-2877, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001

[3] M. Severin, B. Wahlgren, The European project EM-Haz: A consolidated approach to the electromagnetic threat, Paper No 2001-01-2878, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001

[4] V. Mazur Lightning threat to aircraft: do we know all we need to know?, J. Aircraft, Volume 30 (1993), pp. 156-159

[5] B. Fisher, P. Brown, A. Plumer, A. Wunschel, Final results of the NASA storm hazards program, Int. Aerospace and Ground Conf. on Lightning and Static Electricity, Oklahoma, USA, NOAA Special Report, 1988

[6] J.S. Reazer; A.V. Serrano; L.W. Walko; H.D. Burket Analysis of correlated electromagnetic field and current pulses during airborne lightning attachments, Electromagnetics, Volume 7 (1987), pp. 509-539

[7] J.-P. Moreau; J.-C. Alliot; V. Mazur Aircraft lighting initiation and interception from in situ electric measurements and fast video observations, J. Geophys. Res., Volume 97 (1992), pp. 903-912

[8] F. Uhlig, C. Jones, M. Vile, B. Tagliana, Setup and statistical analysis of an database on in-flight lightning strike incidents, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[9] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Analysis of available in-flight measurements of lightning strikes to aircraft, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[10] D.W. Clifford; H.W. Kasemir Triggered lightning, IEEE Trans. Electromagn. Compatibility, Volume 24 (1982), pp. 112-122

[11] V. Mazur; B. Fisher; J. Gerlach Lightning strikes to an airplane in a thunderstorm, J. Aircraft, Volume 21 (1984), pp. 607-611

[12] A. Castellani; A. Bondiou-Clergerie; P. Lalande; A. Bonamy; I. Gallimberti Laboratory study of the bi-leader process from an electrically floating conductor – Part 1: General results, IEE Proc. Sci. Meas. Technol., Volume 145 (1998), pp. 185-192

[13] A. Castellani; A. Bondiou-Clergerie; P. Lalande; A. Bonamy; I. Gallimberti Laboratory study of the bi-leader process from an electrically floating conductor – Part 2: Bi-leader properties, IEE Proc. Sci. Meas. Technol., Volume 145 (1998), pp. 193-199

[14] V. Mazur Physical processes during development of lightning flashes, C. R. Physique, Volume 3 (2002), pp. 1393-1409

[15] H. Zaglauer, W. Wulbrand, A. Douay, F. Uhlig, C. Jones, K. Clibbon, A. Ulmann, P. Lalande, A. Bondiou-Clergerie, P. Laroche, Definition of lightning strike zones on aircraft and helicopters – results of the FULMEN program, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[16] A. Larsson; P. Lalande; A. Bondiou-Clergerie; A. Delannoy The lightning swept stroke along an aircraft in flight. Part I: thermodynamic and electric properties of lightning arc channels, J. Phys. D, Volume 33 (2000), pp. 1866-1875

[17] A. Larsson; P. Lalande; A. Bondiou-Clergerie The lightning swept stroke along an aircraft in flight. Part II: numerical simulations of the complete process, J. Phys. D, Volume 33 (2000), pp. 1876-1883

[18] A. Larsson, A. Bondiou-Clergerie, P. Lalande, A. Delannoy, S. Dupraz, New methodology for determining the extension of lightning swept stroke zones on airborne vehicles, Paper No 2001-01-2876, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001

[19] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Computation of the initial discharge initiation zones on aircraft or helicopter, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[20] I. Coton, B. McNiff, T. Soerensen, W. Zischank, P. Christiansen, M. Hoppe-Klipper, S. Ramakers, P. Pettersson, E. Muljadi, Lightning protection for wind turbines, Paper No 9.13, 25th Int. Conf. on Lightning Protection, Rhodes, Greece, 2000

[21] D.J. Tritton Physical Fluid Dynamics, Clarendon Press, Oxford, 1988

[22] IEC 61312-1, Protection against lightning electromagnetic impulse – Part 1: General principles, 1995

[23] R. Thottappillil Electromagnetic pulse environment of cloud-to-ground lightning for EMC studies, IEEE Trans. Electromagn. Compatibility, Volume 44 (2002), pp. 203-213

[24] E. Bazelyan; Yu. Raizer Lightning Physics and Lightning Protection, Institute of Physics, Bristol, 2000

[25] I. Gallimberti; S. Stangherlin Thermodynamic decay of the leader channel after the discharge arrest, IEE Proc. A, Volume 133 (1986), pp. 431-437

[26] J.J. Lowke; R.E. Voshall; H.C. Ludwig Decay of electrical conductance and temperature of arc plasmas, J. Appl. Phys., Volume 44 (1973), pp. 3513-3523

[27] N.L. Aleksandrov; E.M. Bazelyan; M.N. Shneider Effect of continuous current during pauses between successive strokes on the decay of the lightning channel, Plasma Phys. Rep., Volume 26 (2000), pp. 952-960

[28] H. Maecker Principles of arc motion and displacement, Proc. IEEE, Volume 59 (1971), pp. 439-449

[29] M.A. Uman; R.E. Voshall Time interval between lightning strokes and the initiation of dart leaders, J. Geophys. Res., Volume 73 (1968), pp. 497-506

[30] C. Delalondre; O. Simonin Modelling of high intensity arcs including non-equilibrium description of the cathode sheath, J. Phys. Coll. C5, Volume 51 (1990), pp. 199-206

[31] Yu. Raizer Gas Discharge Physics, Springer-Verlag, Berlin, 1999

[32] J. Haidar Non equilibrium modelling of tranferred arcs, J. Phys. D, Volume 32 (1999), pp. 263-272

[33] H. Tholl Thermalisierung und zeitliche Entwicklung der Elektonendichte und Temperatur von Funkenkanälen in Wasserstoff, Z. Naturforsch, Volume 25a (1970), pp. 420-429

[34] A. Kaddani; S. Zahrai; C. Delalondre; O. Simonin Three-dimensional modelling of unsteady high-pressure arcs in argon, J. Phys. D, Volume 28 (1995), pp. 2294-2305

[35] P. Freton; J.J. Gonzalez; A. Gleizes Comparison between a two- and a three-dimensional arc plasma configuration, J. Phys. D, Volume 33 (2000), pp. 2442-2452

[36] M. Kelkar; J. Heberlein Physics of an arc in cross flow, J. Phys. D, Volume 33 (2000), pp. 2172-2182

[37] M. Plooster Shock waves from line sources. Numerical solutions and experimental measurements, Phys. Fluids, Volume 13 (1970), pp. 2665-2675

[38] M. Plooster Numerical simulation of spark discharges in air, Phys. Fluids, Volume 14 (1971), pp. 2111-2123

[39] M. Plooster Numerical model of the return stroke of the lightning discharge, Phys. Fluids, Volume 14 (1971), pp. 2124-2133

[40] J.D. Jackson Classical Electrodynamics, Wiley, New York, 1975

[41] G. Schmidt Physics of High Temperature Plasma, Academic Press, New York, 1979

[42] J.M. Picone; J.P. Boris; J.R. Greig; M. Raleigh; R.F. Fernsler Convective cooling of lightning channels, J. Atmospheric Sci., Volume 38 (1981), pp. 2056-2062

[43] J.C. Vérité; T. Boucher; A. Comte; C. Delalondre; P. Robin-Jouan; E. Serres; V. Texier; M. Barrault; P. Chevrier; C. Fievet Arc modelling in SF6 circuit breakers, IEE Proc. Sci. Meas. Technol., Volume 142 (1995), pp. 189-196

[44] G.R. Jones, High current arcs at high pressures, XVI Int. Conf. on Phenomena in Ionized Gases, Düsseldorf, Germany, 1983

[45] I. Gallimberti The mechanism of the long spark formation, J. Phys. Coll. C7, Volume 40 (1979), pp. 193-250

[46] A. von Engel Ionized Gases, Clarendon Press, Oxford, 1955

[47] S. Tanaka; K. Sunabe; Y. Goda Three dimensional behaviour analysis of DC free arc column by image processing technique, Paper No A41, XIII Int. Conf. on Gas Discharges and their Applications Glasgow, UK, 2000

[48] K. Sunabe; T. Inaba Electric and moving characteristics of DC kiloampere high-current arcs in atmospheric air, Elec. Engrg. Japan, Volume 110 (1990) no. 1, pp. 9-20

[49] A.F. Bublievskii An approximative model of an electric arc in transverse mutually perpendicular aerodynamic and magnetic fields, J. Engrg. Phys., Volume 35 (1978), pp. 1424-1429

[50] S. Pellerin; F. Richard; J. Chapelle; J.-M. Cormier; K. Musiol Heat string model of bi-dimensional DC glidarc, J. Phys. D, Volume 33 (2000), pp. 2407-2419

[51] B. Jüttner Cathode spots of electric arcs, J. Phys. D, Volume 34 (2001), p. R103-R123

[52] A.E. Guile Electric arcs: their electrode processes and engineering applications, IEE Proc., Volume 121 (1984) no. 7, pp. 450-480 (Part A)

[53] R. Brocke, F. Noack, F. Reichert, J. Schoenau, W. Zischank, The numerical simulation on the effects of lightning current arcs at the attachment point, Paper No 2001-01-2873, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001

[54] Ph. Testé; T. Leblanc; F. Uhlig; J.-P. Chabrerie 3D modelling of the heating of a metal sheet by a moving arc: application to aircraft lightning protection, Eur. Phys. J., Volume 11 (2000), pp. 197-204

[55] L.L. Oh, S.D. Schneider, Lightning strike performance of thin metal skin, Conf. on Lightning and Static Electricity, Culham, UK, 1975

[56] A. Bizyaev, M. Bourmistrov, L. Levitova, V. Noskov, E. Prokhorov, E. Sobolevskaya, K. Sokolov, T. Tarasova, A. Douay, B. Tagliana, F. Uhlig, Investigation of the sweeping of lightning in wind blown arc experiments, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[57] A. Castellani, Calcul du champ électrique par la méthode des charges equivalentes pour la simulation d'une déchage bi-leader, Thèse de doctorat, Université d'Orsay, Paris, France, 1995

[58] A. Bondiou; I. Gallimberti Theoretical modelling of the development of the positive spark in long gaps, J. Phys. D, Volume 27 (1994), pp. 1252-1266

[59] E.M. Bazelyan; Yu.P. Raizer Spark Discharge, CRC Press, Boca Raton, 1998

[60] J.A. Dobbing, A.W. Hanson, A swept stroke experiment with a rocket sled, Int. Symp. on Electromagnetic Compatibility, Atlanta, USA, 1978

[61] H. Schlichting Boundary-Layer Theory, McGraw-Hill, New York, 1968

Cité par Sources :

Commentaires - Politique