Comptes Rendus
Mécanismes physiques du nuage d'orage et de l'éclair/The physics of thundercloud and lightning discharge
The interaction between a lightning flash and an aircraft in flight
[Interaction d'un éclair et d'un avion en vol]
Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1423-1444.

En moyenne, chaque avion de ligne est foudroyé une fois par an. Le foudroiement d'un appareil n'est donc pas exceptionnel et constitue une menace non négligeable pour la sécurité des vols. La compréhension du processus de foudroiement a considérablement progressé ces dernières années, grâce à l'analyse exhaustive des données enregistrées à bord d'avions instrumentés volant dans des zones orageuses. Dans cet article, nous nous appuyons sur la description phénoménologique du foudroiement d'un appareil pour approfondir les bases physiques des différentes phases de l'éclair sur avion.

Roughly speaking, every commercial airliner is struck by lightning once per year. Thus, the lightning strike to aircraft is not uncommon and it poses an appreciable threat to flight safety. The understanding of the lightning strike to aircraft has been greatly enhanced during the last years thanks to a comprehensive analysis of data collected from instrumented aircraft that have been flown into thunderstorm regions. In this article, we will start with the phenomenology of the lightning strike to aircraft and continue with going deeper into the underlying physics of selected processes during the strike.

Publié le :
DOI : 10.1016/S1631-0705(02)01410-X
Keywords: lightning discharge, aircraft, leader, arc
Mots-clés : éclair, avion, leader, arc

Anders Larsson 1

1 FOI – Swedish Defence Research Agency, Grindsjön Research Centre, 14725 Tumba, Sweden
@article{CRPHYS_2002__3_10_1423_0,
     author = {Anders Larsson},
     title = {The interaction between a lightning flash and an aircraft in flight},
     journal = {Comptes Rendus. Physique},
     pages = {1423--1444},
     publisher = {Elsevier},
     volume = {3},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01410-X},
     language = {en},
}
TY  - JOUR
AU  - Anders Larsson
TI  - The interaction between a lightning flash and an aircraft in flight
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 1423
EP  - 1444
VL  - 3
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01410-X
LA  - en
ID  - CRPHYS_2002__3_10_1423_0
ER  - 
%0 Journal Article
%A Anders Larsson
%T The interaction between a lightning flash and an aircraft in flight
%J Comptes Rendus. Physique
%D 2002
%P 1423-1444
%V 3
%N 10
%I Elsevier
%R 10.1016/S1631-0705(02)01410-X
%G en
%F CRPHYS_2002__3_10_1423_0
Anders Larsson. The interaction between a lightning flash and an aircraft in flight. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1423-1444. doi : 10.1016/S1631-0705(02)01410-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01410-X/

[1] B. Fisher, R. Taeuber, K. Crouch, Implications of a recent lightning strike to a NASA jet trainer, AIAA Paper 88-0394, AIAA 26th Aerospace Sciences Meeting, Reno, USA, 1988

[2] Ch. Jones, D. Rowse, G. Odam, Probabilities of catastrophe in lightning hazard assessments, Paper No 2001-01-2877, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001

[3] M. Severin, B. Wahlgren, The European project EM-Haz: A consolidated approach to the electromagnetic threat, Paper No 2001-01-2878, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001

[4] V. Mazur Lightning threat to aircraft: do we know all we need to know?, J. Aircraft, Volume 30 (1993), pp. 156-159

[5] B. Fisher, P. Brown, A. Plumer, A. Wunschel, Final results of the NASA storm hazards program, Int. Aerospace and Ground Conf. on Lightning and Static Electricity, Oklahoma, USA, NOAA Special Report, 1988

[6] J.S. Reazer; A.V. Serrano; L.W. Walko; H.D. Burket Analysis of correlated electromagnetic field and current pulses during airborne lightning attachments, Electromagnetics, Volume 7 (1987), pp. 509-539

[7] J.-P. Moreau; J.-C. Alliot; V. Mazur Aircraft lighting initiation and interception from in situ electric measurements and fast video observations, J. Geophys. Res., Volume 97 (1992), pp. 903-912

[8] F. Uhlig, C. Jones, M. Vile, B. Tagliana, Setup and statistical analysis of an database on in-flight lightning strike incidents, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[9] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Analysis of available in-flight measurements of lightning strikes to aircraft, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[10] D.W. Clifford; H.W. Kasemir Triggered lightning, IEEE Trans. Electromagn. Compatibility, Volume 24 (1982), pp. 112-122

[11] V. Mazur; B. Fisher; J. Gerlach Lightning strikes to an airplane in a thunderstorm, J. Aircraft, Volume 21 (1984), pp. 607-611

[12] A. Castellani; A. Bondiou-Clergerie; P. Lalande; A. Bonamy; I. Gallimberti Laboratory study of the bi-leader process from an electrically floating conductor – Part 1: General results, IEE Proc. Sci. Meas. Technol., Volume 145 (1998), pp. 185-192

[13] A. Castellani; A. Bondiou-Clergerie; P. Lalande; A. Bonamy; I. Gallimberti Laboratory study of the bi-leader process from an electrically floating conductor – Part 2: Bi-leader properties, IEE Proc. Sci. Meas. Technol., Volume 145 (1998), pp. 193-199

[14] V. Mazur Physical processes during development of lightning flashes, C. R. Physique, Volume 3 (2002), pp. 1393-1409

[15] H. Zaglauer, W. Wulbrand, A. Douay, F. Uhlig, C. Jones, K. Clibbon, A. Ulmann, P. Lalande, A. Bondiou-Clergerie, P. Laroche, Definition of lightning strike zones on aircraft and helicopters – results of the FULMEN program, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[16] A. Larsson; P. Lalande; A. Bondiou-Clergerie; A. Delannoy The lightning swept stroke along an aircraft in flight. Part I: thermodynamic and electric properties of lightning arc channels, J. Phys. D, Volume 33 (2000), pp. 1866-1875

[17] A. Larsson; P. Lalande; A. Bondiou-Clergerie The lightning swept stroke along an aircraft in flight. Part II: numerical simulations of the complete process, J. Phys. D, Volume 33 (2000), pp. 1876-1883

[18] A. Larsson, A. Bondiou-Clergerie, P. Lalande, A. Delannoy, S. Dupraz, New methodology for determining the extension of lightning swept stroke zones on airborne vehicles, Paper No 2001-01-2876, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001

[19] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Computation of the initial discharge initiation zones on aircraft or helicopter, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[20] I. Coton, B. McNiff, T. Soerensen, W. Zischank, P. Christiansen, M. Hoppe-Klipper, S. Ramakers, P. Pettersson, E. Muljadi, Lightning protection for wind turbines, Paper No 9.13, 25th Int. Conf. on Lightning Protection, Rhodes, Greece, 2000

[21] D.J. Tritton Physical Fluid Dynamics, Clarendon Press, Oxford, 1988

[22] IEC 61312-1, Protection against lightning electromagnetic impulse – Part 1: General principles, 1995

[23] R. Thottappillil Electromagnetic pulse environment of cloud-to-ground lightning for EMC studies, IEEE Trans. Electromagn. Compatibility, Volume 44 (2002), pp. 203-213

[24] E. Bazelyan; Yu. Raizer Lightning Physics and Lightning Protection, Institute of Physics, Bristol, 2000

[25] I. Gallimberti; S. Stangherlin Thermodynamic decay of the leader channel after the discharge arrest, IEE Proc. A, Volume 133 (1986), pp. 431-437

[26] J.J. Lowke; R.E. Voshall; H.C. Ludwig Decay of electrical conductance and temperature of arc plasmas, J. Appl. Phys., Volume 44 (1973), pp. 3513-3523

[27] N.L. Aleksandrov; E.M. Bazelyan; M.N. Shneider Effect of continuous current during pauses between successive strokes on the decay of the lightning channel, Plasma Phys. Rep., Volume 26 (2000), pp. 952-960

[28] H. Maecker Principles of arc motion and displacement, Proc. IEEE, Volume 59 (1971), pp. 439-449

[29] M.A. Uman; R.E. Voshall Time interval between lightning strokes and the initiation of dart leaders, J. Geophys. Res., Volume 73 (1968), pp. 497-506

[30] C. Delalondre; O. Simonin Modelling of high intensity arcs including non-equilibrium description of the cathode sheath, J. Phys. Coll. C5, Volume 51 (1990), pp. 199-206

[31] Yu. Raizer Gas Discharge Physics, Springer-Verlag, Berlin, 1999

[32] J. Haidar Non equilibrium modelling of tranferred arcs, J. Phys. D, Volume 32 (1999), pp. 263-272

[33] H. Tholl Thermalisierung und zeitliche Entwicklung der Elektonendichte und Temperatur von Funkenkanälen in Wasserstoff, Z. Naturforsch, Volume 25a (1970), pp. 420-429

[34] A. Kaddani; S. Zahrai; C. Delalondre; O. Simonin Three-dimensional modelling of unsteady high-pressure arcs in argon, J. Phys. D, Volume 28 (1995), pp. 2294-2305

[35] P. Freton; J.J. Gonzalez; A. Gleizes Comparison between a two- and a three-dimensional arc plasma configuration, J. Phys. D, Volume 33 (2000), pp. 2442-2452

[36] M. Kelkar; J. Heberlein Physics of an arc in cross flow, J. Phys. D, Volume 33 (2000), pp. 2172-2182

[37] M. Plooster Shock waves from line sources. Numerical solutions and experimental measurements, Phys. Fluids, Volume 13 (1970), pp. 2665-2675

[38] M. Plooster Numerical simulation of spark discharges in air, Phys. Fluids, Volume 14 (1971), pp. 2111-2123

[39] M. Plooster Numerical model of the return stroke of the lightning discharge, Phys. Fluids, Volume 14 (1971), pp. 2124-2133

[40] J.D. Jackson Classical Electrodynamics, Wiley, New York, 1975

[41] G. Schmidt Physics of High Temperature Plasma, Academic Press, New York, 1979

[42] J.M. Picone; J.P. Boris; J.R. Greig; M. Raleigh; R.F. Fernsler Convective cooling of lightning channels, J. Atmospheric Sci., Volume 38 (1981), pp. 2056-2062

[43] J.C. Vérité; T. Boucher; A. Comte; C. Delalondre; P. Robin-Jouan; E. Serres; V. Texier; M. Barrault; P. Chevrier; C. Fievet Arc modelling in SF6 circuit breakers, IEE Proc. Sci. Meas. Technol., Volume 142 (1995), pp. 189-196

[44] G.R. Jones, High current arcs at high pressures, XVI Int. Conf. on Phenomena in Ionized Gases, Düsseldorf, Germany, 1983

[45] I. Gallimberti The mechanism of the long spark formation, J. Phys. Coll. C7, Volume 40 (1979), pp. 193-250

[46] A. von Engel Ionized Gases, Clarendon Press, Oxford, 1955

[47] S. Tanaka; K. Sunabe; Y. Goda Three dimensional behaviour analysis of DC free arc column by image processing technique, Paper No A41, XIII Int. Conf. on Gas Discharges and their Applications Glasgow, UK, 2000

[48] K. Sunabe; T. Inaba Electric and moving characteristics of DC kiloampere high-current arcs in atmospheric air, Elec. Engrg. Japan, Volume 110 (1990) no. 1, pp. 9-20

[49] A.F. Bublievskii An approximative model of an electric arc in transverse mutually perpendicular aerodynamic and magnetic fields, J. Engrg. Phys., Volume 35 (1978), pp. 1424-1429

[50] S. Pellerin; F. Richard; J. Chapelle; J.-M. Cormier; K. Musiol Heat string model of bi-dimensional DC glidarc, J. Phys. D, Volume 33 (2000), pp. 2407-2419

[51] B. Jüttner Cathode spots of electric arcs, J. Phys. D, Volume 34 (2001), p. R103-R123

[52] A.E. Guile Electric arcs: their electrode processes and engineering applications, IEE Proc., Volume 121 (1984) no. 7, pp. 450-480 (Part A)

[53] R. Brocke, F. Noack, F. Reichert, J. Schoenau, W. Zischank, The numerical simulation on the effects of lightning current arcs at the attachment point, Paper No 2001-01-2873, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001

[54] Ph. Testé; T. Leblanc; F. Uhlig; J.-P. Chabrerie 3D modelling of the heating of a metal sheet by a moving arc: application to aircraft lightning protection, Eur. Phys. J., Volume 11 (2000), pp. 197-204

[55] L.L. Oh, S.D. Schneider, Lightning strike performance of thin metal skin, Conf. on Lightning and Static Electricity, Culham, UK, 1975

[56] A. Bizyaev, M. Bourmistrov, L. Levitova, V. Noskov, E. Prokhorov, E. Sobolevskaya, K. Sokolov, T. Tarasova, A. Douay, B. Tagliana, F. Uhlig, Investigation of the sweeping of lightning in wind blown arc experiments, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999

[57] A. Castellani, Calcul du champ électrique par la méthode des charges equivalentes pour la simulation d'une déchage bi-leader, Thèse de doctorat, Université d'Orsay, Paris, France, 1995

[58] A. Bondiou; I. Gallimberti Theoretical modelling of the development of the positive spark in long gaps, J. Phys. D, Volume 27 (1994), pp. 1252-1266

[59] E.M. Bazelyan; Yu.P. Raizer Spark Discharge, CRC Press, Boca Raton, 1998

[60] J.A. Dobbing, A.W. Hanson, A swept stroke experiment with a rocket sled, Int. Symp. on Electromagnetic Compatibility, Atlanta, USA, 1978

[61] H. Schlichting Boundary-Layer Theory, McGraw-Hill, New York, 1968

  • Zachary Milani; Leonid Nichman; Edgar Matida; Liam Fleury; Mengistu Wolde; Eric Bruning; Greg M. McFarquhar; Pavlos Kollias In-flight measurements of lightning locations using an aircraft-mounted lightning mapper, Aerospace Science and Technology, Volume 160 (2025), p. 110038 | DOI:10.1016/j.ast.2025.110038
  • G. Karnas; G. Maslowski; V.A. Rakov Frequency spectra features of electric field waveforms produced by close and middle-range compact intracloud discharges and their discrimination from cloud-to-ground lightning, Electric Power Systems Research, Volume 243 (2025), p. 111498 | DOI:10.1016/j.epsr.2025.111498
  • Grzegorz Karnas; Grzegorz Maslowski Correlated Lightning Electric Field and High-Speed Video Observations of Recoil Leaders Recorded in Rzeszow, Poland, IEEE Transactions on Electromagnetic Compatibility, Volume 67 (2025) no. 1, p. 217 | DOI:10.1109/temc.2024.3477622
  • Hiroki Saito; Atsushi Izumi; Yuxian Meng; Yuji Ichikawa; Kazuhiro Ogawa; Syoma Ishida; Yoshihiro Naruse; Akihiko Nishizaki Direct Copper Metallization of Carbon Fiber-Reinforced Thermoplastic Polymers for Lightning Strike Protection Using Low-Pressure Cold Spray, Journal of Thermal Spray Technology, Volume 34 (2025) no. 1, p. 231 | DOI:10.1007/s11666-024-01885-2
  • Ping Zhang; Ming Wang; Linshu Gong; Zeyong Wei, 2024 IEEE International Conference on Computational Electromagnetics (ICCEM) (2024), p. 1 | DOI:10.1109/iccem60619.2024.10559156
  • P. Tian; N. Xiang; S. Huang; Z. Zheng; D. Li, 2024 IEEE International Conference on Plasma Science (ICOPS) (2024), p. 1 | DOI:10.1109/icops58192.2024.10627240
  • Matheus Mendes de Oliveira; Linnea Runqvist; Thirza Poot; Kajsa Uvdal; Danilo Justino Carastan; Linnea Selegård Hybrid Nanofiller-Enhanced Carbon Fiber-Reinforced Polymer Composites (CFRP) for Lightning Strike Protection (LSP), ACS Omega, Volume 9 (2024) no. 33, p. 35567 | DOI:10.1021/acsomega.4c03272
  • Nianwen Xiang; Pengkun Tian; Chengcheng Qin; Bin Hu; Kejie Li; Shengxin Huang Effect of the negative-end discharge on the positive leader propagation in bidirectional leader discharges, AIP Advances, Volume 14 (2024) no. 10 | DOI:10.1063/5.0226750
  • Xiangyu Tian; Jinru Sun; Wei Sun; Xueling Yao; Xianchao Xu; Shu Li; Jingliang Chen Assessment of Delamination Damage in Carbon Fibre Reinforced Polymer Composites with a Fastener Under Multiple Lightning Strike Conditions, Applied Composite Materials, Volume 31 (2024) no. 4, p. 1155 | DOI:10.1007/s10443-024-10212-5
  • Gandluri Parameswarreddy; Hisayuki Suematsu; Ramanujam Sarathi; Rishi Verma; Archana Sharma Understanding the Lightning Impulse Current Impact on CFRP Epoxy Nanocomposite by Adopting Optical Emission Spectroscopy, IEEE Transactions on Plasma Science, Volume 52 (2024) no. 9, p. 4613 | DOI:10.1109/tps.2024.3425537
  • Aysun Soysal; Ibrahim Ozkol; Erol Uzal; Francisco Rossomando An Analytical-Based Lightning-Induced Damage Model for an Aircraft Wing Exposed to Pressure Loading of Lightning, Mathematical Problems in Engineering, Volume 2024 (2024), p. 1 | DOI:10.1155/2024/8313135
  • Jinbo Bian; Shijun Wang; Zhaokuan Yu; Zhong Zhang; Zhiping Xu Electrified fracture of nanotube films, Physical Review Materials, Volume 8 (2024) no. 2 | DOI:10.1103/physrevmaterials.8.026001
  • Carmen Guerra-Garcia; Samuel Austin; Jaime Peraire; Cuong Nguyen, AIAA SCITECH 2023 Forum (2023) | DOI:10.2514/6.2023-2618
  • Fusheng Wang; Xiangteng Ma; Zheng Wei; Yue Wu; Chenguang Huang Lightning damage of composite material driven by multi-physics coupling, Composites Science and Technology, Volume 233 (2023), p. 109886 | DOI:10.1016/j.compscitech.2022.109886
  • Carlo Petrarca; Marco Balato; Luigi Verolino; Amedeo Andreotti; Dario Assante Computation of Electric and Magnetic Fields Generated by Cloud-to-Cloud Lightning Channels, Energies, Volume 16 (2023) no. 11, p. 4524 | DOI:10.3390/en16114524
  • Carmen Guerra-Garcia The Role of Low Temperature Plasma Research in Designing the Lightning and Precipitation Static Protection of Novel Aircraft, IEEE Transactions on Plasma Science, Volume 51 (2023) no. 4, p. 965 | DOI:10.1109/tps.2022.3209933
  • Siva Chakra Avinash Bikkina; Pappu. V. Y. Jayasree Investigation of Electromagnetic Shielding for Wire Mesh Composite for Aircraft against Lightning Strike, International Journal of Electrical and Electronics Research, Volume 11 (2023) no. 2, p. 353 | DOI:10.37391/ijeer.110216
  • Markus Ostermann; Juergen Schodl; Peter A. Lieberzeit; Pierluigi Bilotto; Markus Valtiner Lightning Strike Protection: Current Challenges and Future Possibilities, Materials, Volume 16 (2023) no. 4, p. 1743 | DOI:10.3390/ma16041743
  • Teng Zhang; Essolé Padayodi; Jean-Claude Sagot; Rija Nirina Raoelison Metallization of carbon-fibre reinforced composites via a metal-epoxy biphasic sublayer and low-pressure cold spraying, Powder Technology, Volume 426 (2023), p. 118575 | DOI:10.1016/j.powtec.2023.118575
  • Ji-Yuan Yang; Jian Cai; Shang-Chen Fu; Xiao-Zeng Yao; Jian Zhang, 2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) (2022), p. 563 | DOI:10.1109/spawda56268.2022.10045886
  • Yakun Liu; Chenguang Zhang; Earle R. Williams; Cien Xiao; Zeyang Zhao; Siyuan Shen, 2022 36th International Conference on Lightning Protection (ICLP) (2022), p. 6 | DOI:10.1109/iclp56858.2022.9942618
  • Y.G. Kim; J.H. Jo; D.H. Kim; H. Lee; R.S. Myong Effects of lightning on UAM aircraft: Complex zoning and direct effects on composite prop-rotor blade, Aerospace Science and Technology, Volume 124 (2022), p. 107560 | DOI:10.1016/j.ast.2022.107560
  • Xiangyu Tian; Jinru Sun; Yafeng Li; Ben Wang; Xueling Yao; Jingliang Chen Study on the Factors Influencing the Damage Modes of Carbon Fiber-Reinforced Polymer Composites with a Fastener Under Lightning Strike Conditions, Applied Composite Materials, Volume 29 (2022) no. 2, p. 711 | DOI:10.1007/s10443-021-09987-8
  • S. C. A. Bikkina; P. V. Y. Jayasree Development of a Wire Mesh Composite Material for Aerospace Applications, Engineering, Technology Applied Science Research, Volume 12 (2022) no. 5, p. 9310 | DOI:10.48084/etasr.5201
  • Jaime Benavides-Guerrero; Debika Banerjee; Dawit Gedamu; Luis Felipe Gerlein; Sylvain G. Cloutier Conductive, Anti-Corrosion, Self-Healing Smart Coating Technology Incorporating Graphene-Based Nanocomposite Matrix, Frontiers in Materials, Volume 9 (2022) | DOI:10.3389/fmats.2022.835855
  • Benjamin C. Martell; Pol Fontanes; Joan Montanya; Carmen Guerra-Garcia Flight Demonstration of Net Electric Charge Control of Aircraft Using Corona Discharge, IEEE Transactions on Aerospace and Electronic Systems, Volume 58 (2022) no. 6, p. 5607 | DOI:10.1109/taes.2022.3178069
  • Alexander Temnikov; Leonid Chernensky; Olga Belova; Alexander Orlov; Nikolay Lysov; Tatiana Kivshar; Dmitry Kovalev Influence of kind of lightning stripe models on spectral characteristics of discharge phenomena inside aircraft nose radome model, Journal of Electrostatics, Volume 115 (2022), p. 103661 | DOI:10.1016/j.elstat.2021.103661
  • Ch. Himagireesh; K. Ramji; K.G. Durga Prasad; V. Hari Kiran Multi-criteria decision model for selection of a material suitable to lightning strike protection in aerospace applications, Materials Today: Proceedings, Volume 59 (2022), p. 725 | DOI:10.1016/j.matpr.2021.12.462
  • Jong-Hyun Kim; Dong-Jun Kwon; K. Lawrence DeVries; Joung-Man Park Interfacial, electrical, and mechanical properties of MWCNT in polyurethane nanocomposite coating via 2D electrical resistance mapping for aircraft topcoat, Progress in Organic Coatings, Volume 163 (2022), p. 106667 | DOI:10.1016/j.porgcoat.2021.106667
  • Meixin Chen; Hanqing Che; Stephen Yue Exploring surface preparation for cold spraying on polymers, Surface and Coatings Technology, Volume 450 (2022), p. 128993 | DOI:10.1016/j.surfcoat.2022.128993
  • Dongyang Yang; Cien Xiao; Yakun Liu; Jian Chen; Zhen Xu; Zhijian Jin, 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA) (2021), p. 1 | DOI:10.1109/iclpandsipda54065.2021.9627475
  • Nikolay Lysov; Alexander Temnikov; Leonid Chernensky; Alexander Orlov; Olga Belova; Tatiana Kivshar; Dmitry Kovalev; Mikhail Belyakov; Vadim Voevodin A Laboratory Investigation of the Probable Mechanisms of the Action of an Artificial Thunderstorm Cell on Model Aircraft Radomes, Atmosphere, Volume 12 (2021) no. 12, p. 1637 | DOI:10.3390/atmos12121637
  • Marija Radmilović-Radjenović; Martin Sabo; Branislav Radjenović Transport Characteristics of the Electrification and Lightning of the Gas Mixture Representing the Atmospheres of the Solar System Planets, Atmosphere, Volume 12 (2021) no. 4, p. 438 | DOI:10.3390/atmos12040438
  • Sergio de Juan; Elena Gordo; Antonia Jiménez-Morales; Frédéric Sirois Response of electroless copper coated CFRP laminates to emulated lightning strikes, Composites Part A: Applied Science and Manufacturing, Volume 140 (2021), p. 106184 | DOI:10.1016/j.compositesa.2020.106184
  • Yafeng Li; Jinru Sun; Shu Li; Xiangyu Tian; Xueling Yao; Ben Wang; Jingliang Chen An experimental study of impulse-current-induced mechanical effects on laminated carbon fibre-reinforced polymer composites, Composites Part B: Engineering, Volume 225 (2021), p. 109245 | DOI:10.1016/j.compositesb.2021.109245
  • Xiangteng Ma; Fusheng Wang; Zhen Wang; Yan Li; Bin Xu Thermal dynamic damage of aircraft composite material suffered from lightning channel attachment based on moving mesh method, Composites Science and Technology, Volume 214 (2021), p. 109003 | DOI:10.1016/j.compscitech.2021.109003
  • Murniwati Anwar; Faizal Mustapha; Mohamed Thariq H. Sultan; Izhal A. Halin; Mohd N. Abdullah; Mohd I. Hassim; Mazli Mustapha Damage Identification on Impact and Lightning Damage of Flax Composite Laminates (Linum usitatissimum) Using Long-Pulse Thermography of a Low-Resolution Infrared Camera, Frontiers in Materials, Volume 8 (2021) | DOI:10.3389/fmats.2021.618461
  • Siva Chakra Avinash Bikkina; P.V.Y. Jayasree Analysis of Electromagnetic Reflection Loss for Mesh Structure with A16061 MMC for Aerospace Applications, IOP Conference Series: Materials Science and Engineering, Volume 1206 (2021) no. 1, p. 012021 | DOI:10.1088/1757-899x/1206/1/012021
  • Srinu Budumuru; M. Satya Anuradha Electromagnetic shielding effectiveness for A16061 metal matrix composite based mesh wire reinforced with Flyash for oblique incidence of EM wave, IOP Conference Series: Materials Science and Engineering, Volume 1206 (2021) no. 1, p. 012025 | DOI:10.1088/1757-899x/1206/1/012025
  • Srinu Budumuru; Satya Anuradha Mosa Analysis of shielding effectiveness and mechanical properties of metal matrix composite AL6061 reinforced with Al2O3 and fly ash for oblique incidence of EM wave, International Journal of Intelligent Computing and Cybernetics, Volume 14 (2021) no. 3, p. 398 | DOI:10.1108/ijicc-01-2021-0014
  • Srinu Budumuru; M. Satya Anuradha Analysis of Electromagnetic Shielding Effectiveness Properties of Al6061 Metal Matrix Composites at X-Band for Aerospace Applications, Microelectronics, Electromagnetics and Telecommunications, Volume 655 (2021), p. 467 | DOI:10.1007/978-981-15-3828-5_49
  • Matheus Mendes de Oliveira; Sven Forsberg; Linnéa Selegård; Danilo Justino Carastan The Influence of Sonication Processing Conditions on Electrical and Mechanical Properties of Single and Hybrid Epoxy Nanocomposites Filled with Carbon Nanoparticles, Polymers, Volume 13 (2021) no. 23, p. 4128 | DOI:10.3390/polym13234128
  • Ch Hima Gireesh; Koona Ramji; K.G Durga Prasad; Budumuru Srinu Study of Mechanical Properties and EMI Shielding Behaviour of Al6061 Hybrid Metal Matrix Composites, Research Anthology on Reliability and Safety in Aviation Systems, Spacecraft, and Air Transport (2021), p. 894 | DOI:10.4018/978-1-7998-5357-2.ch035
  • Xiangteng MA; Fusheng WANG; Han CHEN; Donghong WANG; Bin XU Thermal damage analysis of aircraft composite laminate suffered from lightning swept stroke and arc propagation, Chinese Journal of Aeronautics, Volume 33 (2020) no. 4, p. 1242 | DOI:10.1016/j.cja.2019.07.028
  • Cecilia Agustín-Sáenz; Patricia Santa Coloma; Francisco J. Fernández-Carretero; Fabiola Brusciotti; Marta Brizuela Design of Corrosion Protective and Antistatic Hybrid Sol-Gel Coatings on 6XXX AlMgSi Alloys for Aerospace Application, Coatings, Volume 10 (2020) no. 5, p. 441 | DOI:10.3390/coatings10050441
  • Siwat Manomaisantiphap; Vipin Kumar; Takao Okada; Tomohiro Yokozeki Electrically conductive carbon fiber layers as lightning strike protection for non-conductive epoxy-based CFRP substrate, Journal of Composite Materials, Volume 54 (2020) no. 29, p. 4547 | DOI:10.1177/0021998320935946
  • Brian G. Falzon; Robert S. Pierce Thermosetting Composite Materials in Aerostructures, Revolutionizing Aircraft Materials and Processes (2020), p. 57 | DOI:10.1007/978-3-030-35346-9_3
  • A.M. Amaro; P.N.B. Reis; M.A. Neto; M. Santos; J.B. Santos Effect of the electric current on the stress relaxation behaviour of CFRP composites, Thin-Walled Structures, Volume 149 (2020), p. 106659 | DOI:10.1016/j.tws.2020.106659
  • Hetao Chu; Qianshan Xia; Zhichun Zhang; Yanju Liu; Jinsong Leng Sesame-cookie topography silver nanoparticles modified carbon nanotube paper for enhancing lightning strike protection, Carbon, Volume 143 (2019), p. 204 | DOI:10.1016/j.carbon.2018.11.022
  • Ch Hima Gireesh; Koona Ramji; K.G Durga Prasad; Budumuru Srinu Study of Mechanical Properties and EMI Shielding Behaviour of Al6061 Hybrid Metal Matrix Composites, International Journal of Surface Engineering and Interdisciplinary Materials Science, Volume 7 (2019) no. 2, p. 48 | DOI:10.4018/ijseims.2019070104
  • F.S. Wang; Y. Zhang; X.T. Ma; Z. Wei; J.F. Gao Lightning ablation suppression of aircraft carbon/epoxy composite laminates by metal mesh, Journal of Materials Science Technology, Volume 35 (2019) no. 11, p. 2693 | DOI:10.1016/j.jmst.2019.07.010
  • Shangchen Fu; Yifan Guo; Lihua Shi; Yinghui Zhou Investigation on temperature behavior of CFRP during lightning strike using experiment and simulation, Polymer Composites, Volume 40 (2019) no. 9, p. 3541 | DOI:10.1002/pc.25216
  • Carmen Guerra-Garcia; Ngoc Cuong Nguyen; Jaime Peraire; Manuel Martinez-Sanchez Charge Control Strategy for Aircraft-Triggered Lightning Strike Risk Reduction, AIAA Journal, Volume 56 (2018) no. 5, p. 1988 | DOI:10.2514/1.j056406
  • F.S. Wang; X.S. Yu; S.Q. Jia; P. Li Experimental and numerical study on residual strength of aircraft carbon/epoxy composite after lightning strike, Aerospace Science and Technology, Volume 75 (2018), p. 304 | DOI:10.1016/j.ast.2018.01.029
  • Hande Yavuz; Jinbo Bai Plasma Polypyrrole Coated Hybrid Composites with Improved Mechanical and Electrical Properties for Aerospace Applications, Applied Composite Materials, Volume 25 (2018) no. 3, p. 661 | DOI:10.1007/s10443-017-9644-2
  • Chia Sheng Gan; Chen Ciang Chia; Lin Yaw Tan; Norkhairunnisa Mazlan; Joel B. Harley Statistical evaluation of damage size based on amplitude mapping of damage-induced ultrasonic wavefield, IOP Conference Series: Materials Science and Engineering, Volume 405 (2018), p. 012006 | DOI:10.1088/1757-899x/405/1/012006
  • Hanqing Che; Martin Gagné; P. S. M. Rajesh; Jolanta E. Klemberg-Sapieha; Frederic Sirois; Daniel Therriault; Stephen Yue Metallization of Carbon Fiber Reinforced Polymers for Lightning Strike Protection, Journal of Materials Engineering and Performance, Volume 27 (2018) no. 10, p. 5205 | DOI:10.1007/s11665-018-3609-y
  • Fusheng WANG; Xiangteng MA; Han CHEN; Yao ZHANG Evolution simulation of lightning discharge based on a magnetohydrodynamics method, Plasma Science and Technology, Volume 20 (2018) no. 7, p. 075301 | DOI:10.1088/2058-6272/aab841
  • A.M. Amaro; P.N.B. Reis; J.B. Santos; M.J. Santos; M.A. Neto Effect of the electric current on the impact fatigue strength of CFRP composites, Composite Structures, Volume 182 (2017), p. 191 | DOI:10.1016/j.compstruct.2017.09.032
  • Suresh Sharma; A. Nivetha; A. Maalavan; K. Siva Subramanian; S. Sree Kumar; Mohan Kumar Pitchan; S. Bhowmik; S. Ramanathan; R. Rane; S. Mukherjee Novel Lightning Strike-Protected Polymeric Composite for Future Generation Aviation, Journal of Aerospace Engineering, Volume 30 (2017) no. 1 | DOI:10.1061/(asce)as.1943-5525.0000660
  • N.C. Nguyen; C. Guerra-Garcia; J. Peraire; M. Martinez-Sanchez Computational study of glow corona discharge in wind: Biased conductor, Journal of Electrostatics, Volume 89 (2017), p. 1 | DOI:10.1016/j.elstat.2017.06.005
  • Liberata Guadagno; Carlo Naddeo; Marialuigia Raimondo; Giuseppina Barra; Luigi Vertuccio; Salvatore Russo; Khalid Lafdi; Vincenzo Tucci; Giovanni Spinelli; Patrizia Lamberti Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials, Nanotechnology, Volume 28 (2017) no. 9, p. 094001 | DOI:10.1088/1361-6528/aa583d
  • Philippe Teulet; Tommy Billoux; Yann Cressault; Mathieu Masquère; Alain Gleizes; Ivan Revel; Bruno Lepetit; Gilles Peres Energy balance and assessment of the pressure build-up around a bolt fastener due to sparking during a lightning impact, The European Physical Journal Applied Physics, Volume 77 (2017) no. 2, p. 20801 | DOI:10.1051/epjap/2017160467
  • Iryna Patsora; Henning Heuer; Susanne Hillmann; Dmytro Tatarchuk Study of a Particle Based Films Cure Process by High-Frequency Eddy Current Spectroscopy, Coatings, Volume 7 (2016) no. 1, p. 3 | DOI:10.3390/coatings7010003
  • F.S. Wang; Y.Y. Ji; X.S. Yu; H. Chen; Z.F. Yue Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike, Composite Structures, Volume 145 (2016), p. 226 | DOI:10.1016/j.compstruct.2016.03.005
  • R Sousa Martins; L Chemartin; C Zaepffel; Ph Lalande; A Soufiani Electrical and hydrodynamic characterization of a high current pulsed arc, Journal of Physics D: Applied Physics, Volume 49 (2016) no. 18, p. 185204 | DOI:10.1088/0022-3727/49/18/185204
  • C Guerra-Garcia; N C Nguyen; J Peraire; M Martinez-Sanchez Arc reattachment driven by a turbulent boundary layer: implications for the sweeping of lightning arcs along aircraft, Journal of Physics D: Applied Physics, Volume 49 (2016) no. 37, p. 375204 | DOI:10.1088/0022-3727/49/37/375204
  • Katarzyna Krukiewicz; Andrzej Katunin The effect of reaction medium on the conductivity and morphology of polyaniline doped with camphorsulfonic acid, Synthetic Metals, Volume 214 (2016), p. 45 | DOI:10.1016/j.synthmet.2016.01.017
  • Jin-hua Han; Hui Zhang; Ming-ji Chen; Dong Wang; Qing Liu; Qi-lei Wu; Zhong Zhang The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates, Carbon, Volume 94 (2015), p. 101 | DOI:10.1016/j.carbon.2015.06.026
  • Simon Evans; Ivan Revel; Matthew Cole; Richard Mills, 2014 International Conference on Lightning Protection (ICLP) (2014), p. 1952 | DOI:10.1109/iclp.2014.6973447
  • F Lago Lightning in aeronautics, Journal of Physics: Conference Series, Volume 550 (2014), p. 012001 | DOI:10.1088/1742-6596/550/1/012001
  • Martin Gagné; Daniel Therriault Lightning strike protection of composites, Progress in Aerospace Sciences, Volume 64 (2014), p. 1 | DOI:10.1016/j.paerosci.2013.07.002
  • Prof. Norio Takahashi; Sanmugasundaram Thirukumaran; Paul Ratnamahilan Polycarp Hoole; Harikrishnan Ramiah; Jeevan Kanesan; Kandasamy Pirapaharan; Samuel Ratnajeevan Herbert Hoole A new electric dipole model for lightning-aircraft electrodynamics, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Volume 33 (2013) no. 1/2, p. 540 | DOI:10.1108/compel-12-2012-0385
  • A. G. Temnikov; L. L. Chernenskii; A. V. Orlov; S. S. Antonenko Breakdown of model aircraft radome dielectric shell in artificial charged aerosol clouds, Technical Physics Letters, Volume 37 (2011) no. 10, p. 907 | DOI:10.1134/s1063785011100154
  • A.G. Temnikov; L.L. Chernensky; A.V. Orlov; O.V. Polyakova, 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845877
  • A. G. Temnikov; L. L. Chernenskiĭ; A. V. Orlov; O. V. Polyakova Experimental study of the effect of artificial charged aqueous aerosol cloud on model aircraft radome, Technical Physics Letters, Volume 36 (2010) no. 9, p. 848 | DOI:10.1134/s106378501009021x
  • E.M. Bazelyan; N.L. Aleksandrov; Yu. P. Raizer; A.M. Konchakov The effect of air density on atmospheric electric fields required for lightning initiation from a long airborne object, Atmospheric Research, Volume 86 (2007) no. 2, p. 126 | DOI:10.1016/j.atmosres.2007.04.001
  • F Lago; J J Gonzalez; P Freton; F Uhlig; N Lucius; G P Piau A numerical modelling of an electric arc and its interaction with the anode: part III. Application to the interaction of a lightning strike and an aircraft in flight, Journal of Physics D: Applied Physics, Volume 39 (2006) no. 10, p. 2294 | DOI:10.1088/0022-3727/39/10/045
  • Anders Larsson; Alain Delannoy; Philippe Lalande Voltage drop along a lightning channel during strikes to aircraft, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 377 | DOI:10.1016/j.atmosres.2004.11.033

Cité par 79 documents. Sources : Crossref

Commentaires - Politique