[Interaction d'un éclair et d'un avion en vol]
En moyenne, chaque avion de ligne est foudroyé une fois par an. Le foudroiement d'un appareil n'est donc pas exceptionnel et constitue une menace non négligeable pour la sécurité des vols. La compréhension du processus de foudroiement a considérablement progressé ces dernières années, grâce à l'analyse exhaustive des données enregistrées à bord d'avions instrumentés volant dans des zones orageuses. Dans cet article, nous nous appuyons sur la description phénoménologique du foudroiement d'un appareil pour approfondir les bases physiques des différentes phases de l'éclair sur avion.
Roughly speaking, every commercial airliner is struck by lightning once per year. Thus, the lightning strike to aircraft is not uncommon and it poses an appreciable threat to flight safety. The understanding of the lightning strike to aircraft has been greatly enhanced during the last years thanks to a comprehensive analysis of data collected from instrumented aircraft that have been flown into thunderstorm regions. In this article, we will start with the phenomenology of the lightning strike to aircraft and continue with going deeper into the underlying physics of selected processes during the strike.
Mots-clés : éclair, avion, leader, arc
Anders Larsson 1
@article{CRPHYS_2002__3_10_1423_0, author = {Anders Larsson}, title = {The interaction between a lightning flash and an aircraft in flight}, journal = {Comptes Rendus. Physique}, pages = {1423--1444}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01410-X}, language = {en}, }
Anders Larsson. The interaction between a lightning flash and an aircraft in flight. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1423-1444. doi : 10.1016/S1631-0705(02)01410-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01410-X/
[1] B. Fisher, R. Taeuber, K. Crouch, Implications of a recent lightning strike to a NASA jet trainer, AIAA Paper 88-0394, AIAA 26th Aerospace Sciences Meeting, Reno, USA, 1988
[2] Ch. Jones, D. Rowse, G. Odam, Probabilities of catastrophe in lightning hazard assessments, Paper No 2001-01-2877, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001
[3] M. Severin, B. Wahlgren, The European project EM-Haz: A consolidated approach to the electromagnetic threat, Paper No 2001-01-2878, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001
[4] Lightning threat to aircraft: do we know all we need to know?, J. Aircraft, Volume 30 (1993), pp. 156-159
[5] B. Fisher, P. Brown, A. Plumer, A. Wunschel, Final results of the NASA storm hazards program, Int. Aerospace and Ground Conf. on Lightning and Static Electricity, Oklahoma, USA, NOAA Special Report, 1988
[6] Analysis of correlated electromagnetic field and current pulses during airborne lightning attachments, Electromagnetics, Volume 7 (1987), pp. 509-539
[7] Aircraft lighting initiation and interception from in situ electric measurements and fast video observations, J. Geophys. Res., Volume 97 (1992), pp. 903-912
[8] F. Uhlig, C. Jones, M. Vile, B. Tagliana, Setup and statistical analysis of an database on in-flight lightning strike incidents, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[9] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Analysis of available in-flight measurements of lightning strikes to aircraft, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[10] Triggered lightning, IEEE Trans. Electromagn. Compatibility, Volume 24 (1982), pp. 112-122
[11] Lightning strikes to an airplane in a thunderstorm, J. Aircraft, Volume 21 (1984), pp. 607-611
[12] Laboratory study of the bi-leader process from an electrically floating conductor – Part 1: General results, IEE Proc. Sci. Meas. Technol., Volume 145 (1998), pp. 185-192
[13] Laboratory study of the bi-leader process from an electrically floating conductor – Part 2: Bi-leader properties, IEE Proc. Sci. Meas. Technol., Volume 145 (1998), pp. 193-199
[14] Physical processes during development of lightning flashes, C. R. Physique, Volume 3 (2002), pp. 1393-1409
[15] H. Zaglauer, W. Wulbrand, A. Douay, F. Uhlig, C. Jones, K. Clibbon, A. Ulmann, P. Lalande, A. Bondiou-Clergerie, P. Laroche, Definition of lightning strike zones on aircraft and helicopters – results of the FULMEN program, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[16] The lightning swept stroke along an aircraft in flight. Part I: thermodynamic and electric properties of lightning arc channels, J. Phys. D, Volume 33 (2000), pp. 1866-1875
[17] The lightning swept stroke along an aircraft in flight. Part II: numerical simulations of the complete process, J. Phys. D, Volume 33 (2000), pp. 1876-1883
[18] A. Larsson, A. Bondiou-Clergerie, P. Lalande, A. Delannoy, S. Dupraz, New methodology for determining the extension of lightning swept stroke zones on airborne vehicles, Paper No 2001-01-2876, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001
[19] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Computation of the initial discharge initiation zones on aircraft or helicopter, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[20] I. Coton, B. McNiff, T. Soerensen, W. Zischank, P. Christiansen, M. Hoppe-Klipper, S. Ramakers, P. Pettersson, E. Muljadi, Lightning protection for wind turbines, Paper No 9.13, 25th Int. Conf. on Lightning Protection, Rhodes, Greece, 2000
[21] Physical Fluid Dynamics, Clarendon Press, Oxford, 1988
[22] IEC 61312-1, Protection against lightning electromagnetic impulse – Part 1: General principles, 1995
[23] Electromagnetic pulse environment of cloud-to-ground lightning for EMC studies, IEEE Trans. Electromagn. Compatibility, Volume 44 (2002), pp. 203-213
[24] Lightning Physics and Lightning Protection, Institute of Physics, Bristol, 2000
[25] Thermodynamic decay of the leader channel after the discharge arrest, IEE Proc. A, Volume 133 (1986), pp. 431-437
[26] Decay of electrical conductance and temperature of arc plasmas, J. Appl. Phys., Volume 44 (1973), pp. 3513-3523
[27] Effect of continuous current during pauses between successive strokes on the decay of the lightning channel, Plasma Phys. Rep., Volume 26 (2000), pp. 952-960
[28] Principles of arc motion and displacement, Proc. IEEE, Volume 59 (1971), pp. 439-449
[29] Time interval between lightning strokes and the initiation of dart leaders, J. Geophys. Res., Volume 73 (1968), pp. 497-506
[30] Modelling of high intensity arcs including non-equilibrium description of the cathode sheath, J. Phys. Coll. C5, Volume 51 (1990), pp. 199-206
[31] Gas Discharge Physics, Springer-Verlag, Berlin, 1999
[32] Non equilibrium modelling of tranferred arcs, J. Phys. D, Volume 32 (1999), pp. 263-272
[33] Thermalisierung und zeitliche Entwicklung der Elektonendichte und Temperatur von Funkenkanälen in Wasserstoff, Z. Naturforsch, Volume 25a (1970), pp. 420-429
[34] Three-dimensional modelling of unsteady high-pressure arcs in argon, J. Phys. D, Volume 28 (1995), pp. 2294-2305
[35] Comparison between a two- and a three-dimensional arc plasma configuration, J. Phys. D, Volume 33 (2000), pp. 2442-2452
[36] Physics of an arc in cross flow, J. Phys. D, Volume 33 (2000), pp. 2172-2182
[37] Shock waves from line sources. Numerical solutions and experimental measurements, Phys. Fluids, Volume 13 (1970), pp. 2665-2675
[38] Numerical simulation of spark discharges in air, Phys. Fluids, Volume 14 (1971), pp. 2111-2123
[39] Numerical model of the return stroke of the lightning discharge, Phys. Fluids, Volume 14 (1971), pp. 2124-2133
[40] Classical Electrodynamics, Wiley, New York, 1975
[41] Physics of High Temperature Plasma, Academic Press, New York, 1979
[42] Convective cooling of lightning channels, J. Atmospheric Sci., Volume 38 (1981), pp. 2056-2062
[43] Arc modelling in SF6 circuit breakers, IEE Proc. Sci. Meas. Technol., Volume 142 (1995), pp. 189-196
[44] G.R. Jones, High current arcs at high pressures, XVI Int. Conf. on Phenomena in Ionized Gases, Düsseldorf, Germany, 1983
[45] The mechanism of the long spark formation, J. Phys. Coll. C7, Volume 40 (1979), pp. 193-250
[46] Ionized Gases, Clarendon Press, Oxford, 1955
[47] Three dimensional behaviour analysis of DC free arc column by image processing technique, Paper No A41, XIII Int. Conf. on Gas Discharges and their Applications Glasgow, UK, 2000
[48] Electric and moving characteristics of DC kiloampere high-current arcs in atmospheric air, Elec. Engrg. Japan, Volume 110 (1990) no. 1, pp. 9-20
[49] An approximative model of an electric arc in transverse mutually perpendicular aerodynamic and magnetic fields, J. Engrg. Phys., Volume 35 (1978), pp. 1424-1429
[50] Heat string model of bi-dimensional DC glidarc, J. Phys. D, Volume 33 (2000), pp. 2407-2419
[51] Cathode spots of electric arcs, J. Phys. D, Volume 34 (2001), p. R103-R123
[52] Electric arcs: their electrode processes and engineering applications, IEE Proc., Volume 121 (1984) no. 7, pp. 450-480 (Part A)
[53] R. Brocke, F. Noack, F. Reichert, J. Schoenau, W. Zischank, The numerical simulation on the effects of lightning current arcs at the attachment point, Paper No 2001-01-2873, Int. Conf. on Lightning and Static Electricity, Seattle, USA, 2001
[54] 3D modelling of the heating of a metal sheet by a moving arc: application to aircraft lightning protection, Eur. Phys. J., Volume 11 (2000), pp. 197-204
[55] L.L. Oh, S.D. Schneider, Lightning strike performance of thin metal skin, Conf. on Lightning and Static Electricity, Culham, UK, 1975
[56] A. Bizyaev, M. Bourmistrov, L. Levitova, V. Noskov, E. Prokhorov, E. Sobolevskaya, K. Sokolov, T. Tarasova, A. Douay, B. Tagliana, F. Uhlig, Investigation of the sweeping of lightning in wind blown arc experiments, Int. Conf. on Lightning and Static Electricity, Toulouse, France, 1999
[57] A. Castellani, Calcul du champ électrique par la méthode des charges equivalentes pour la simulation d'une déchage bi-leader, Thèse de doctorat, Université d'Orsay, Paris, France, 1995
[58] Theoretical modelling of the development of the positive spark in long gaps, J. Phys. D, Volume 27 (1994), pp. 1252-1266
[59] Spark Discharge, CRC Press, Boca Raton, 1998
[60] J.A. Dobbing, A.W. Hanson, A swept stroke experiment with a rocket sled, Int. Symp. on Electromagnetic Compatibility, Atlanta, USA, 1978
[61] Boundary-Layer Theory, McGraw-Hill, New York, 1968
- In-flight measurements of lightning locations using an aircraft-mounted lightning mapper, Aerospace Science and Technology, Volume 160 (2025), p. 110038 | DOI:10.1016/j.ast.2025.110038
- Frequency spectra features of electric field waveforms produced by close and middle-range compact intracloud discharges and their discrimination from cloud-to-ground lightning, Electric Power Systems Research, Volume 243 (2025), p. 111498 | DOI:10.1016/j.epsr.2025.111498
- Correlated Lightning Electric Field and High-Speed Video Observations of Recoil Leaders Recorded in Rzeszow, Poland, IEEE Transactions on Electromagnetic Compatibility, Volume 67 (2025) no. 1, p. 217 | DOI:10.1109/temc.2024.3477622
- Direct Copper Metallization of Carbon Fiber-Reinforced Thermoplastic Polymers for Lightning Strike Protection Using Low-Pressure Cold Spray, Journal of Thermal Spray Technology, Volume 34 (2025) no. 1, p. 231 | DOI:10.1007/s11666-024-01885-2
- , 2024 IEEE International Conference on Computational Electromagnetics (ICCEM) (2024), p. 1 | DOI:10.1109/iccem60619.2024.10559156
- , 2024 IEEE International Conference on Plasma Science (ICOPS) (2024), p. 1 | DOI:10.1109/icops58192.2024.10627240
- Hybrid Nanofiller-Enhanced Carbon Fiber-Reinforced Polymer Composites (CFRP) for Lightning Strike Protection (LSP), ACS Omega, Volume 9 (2024) no. 33, p. 35567 | DOI:10.1021/acsomega.4c03272
- Effect of the negative-end discharge on the positive leader propagation in bidirectional leader discharges, AIP Advances, Volume 14 (2024) no. 10 | DOI:10.1063/5.0226750
- Assessment of Delamination Damage in Carbon Fibre Reinforced Polymer Composites with a Fastener Under Multiple Lightning Strike Conditions, Applied Composite Materials, Volume 31 (2024) no. 4, p. 1155 | DOI:10.1007/s10443-024-10212-5
- Understanding the Lightning Impulse Current Impact on CFRP Epoxy Nanocomposite by Adopting Optical Emission Spectroscopy, IEEE Transactions on Plasma Science, Volume 52 (2024) no. 9, p. 4613 | DOI:10.1109/tps.2024.3425537
- An Analytical-Based Lightning-Induced Damage Model for an Aircraft Wing Exposed to Pressure Loading of Lightning, Mathematical Problems in Engineering, Volume 2024 (2024), p. 1 | DOI:10.1155/2024/8313135
- Electrified fracture of nanotube films, Physical Review Materials, Volume 8 (2024) no. 2 | DOI:10.1103/physrevmaterials.8.026001
- , AIAA SCITECH 2023 Forum (2023) | DOI:10.2514/6.2023-2618
- Lightning damage of composite material driven by multi-physics coupling, Composites Science and Technology, Volume 233 (2023), p. 109886 | DOI:10.1016/j.compscitech.2022.109886
- Computation of Electric and Magnetic Fields Generated by Cloud-to-Cloud Lightning Channels, Energies, Volume 16 (2023) no. 11, p. 4524 | DOI:10.3390/en16114524
- The Role of Low Temperature Plasma Research in Designing the Lightning and Precipitation Static Protection of Novel Aircraft, IEEE Transactions on Plasma Science, Volume 51 (2023) no. 4, p. 965 | DOI:10.1109/tps.2022.3209933
- Investigation of Electromagnetic Shielding for Wire Mesh Composite for Aircraft against Lightning Strike, International Journal of Electrical and Electronics Research, Volume 11 (2023) no. 2, p. 353 | DOI:10.37391/ijeer.110216
- Lightning Strike Protection: Current Challenges and Future Possibilities, Materials, Volume 16 (2023) no. 4, p. 1743 | DOI:10.3390/ma16041743
- Metallization of carbon-fibre reinforced composites via a metal-epoxy biphasic sublayer and low-pressure cold spraying, Powder Technology, Volume 426 (2023), p. 118575 | DOI:10.1016/j.powtec.2023.118575
- , 2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) (2022), p. 563 | DOI:10.1109/spawda56268.2022.10045886
- , 2022 36th International Conference on Lightning Protection (ICLP) (2022), p. 6 | DOI:10.1109/iclp56858.2022.9942618
- Effects of lightning on UAM aircraft: Complex zoning and direct effects on composite prop-rotor blade, Aerospace Science and Technology, Volume 124 (2022), p. 107560 | DOI:10.1016/j.ast.2022.107560
- Study on the Factors Influencing the Damage Modes of Carbon Fiber-Reinforced Polymer Composites with a Fastener Under Lightning Strike Conditions, Applied Composite Materials, Volume 29 (2022) no. 2, p. 711 | DOI:10.1007/s10443-021-09987-8
- Development of a Wire Mesh Composite Material for Aerospace Applications, Engineering, Technology Applied Science Research, Volume 12 (2022) no. 5, p. 9310 | DOI:10.48084/etasr.5201
- Conductive, Anti-Corrosion, Self-Healing Smart Coating Technology Incorporating Graphene-Based Nanocomposite Matrix, Frontiers in Materials, Volume 9 (2022) | DOI:10.3389/fmats.2022.835855
- Flight Demonstration of Net Electric Charge Control of Aircraft Using Corona Discharge, IEEE Transactions on Aerospace and Electronic Systems, Volume 58 (2022) no. 6, p. 5607 | DOI:10.1109/taes.2022.3178069
- Influence of kind of lightning stripe models on spectral characteristics of discharge phenomena inside aircraft nose radome model, Journal of Electrostatics, Volume 115 (2022), p. 103661 | DOI:10.1016/j.elstat.2021.103661
- Multi-criteria decision model for selection of a material suitable to lightning strike protection in aerospace applications, Materials Today: Proceedings, Volume 59 (2022), p. 725 | DOI:10.1016/j.matpr.2021.12.462
- Interfacial, electrical, and mechanical properties of MWCNT in polyurethane nanocomposite coating via 2D electrical resistance mapping for aircraft topcoat, Progress in Organic Coatings, Volume 163 (2022), p. 106667 | DOI:10.1016/j.porgcoat.2021.106667
- Exploring surface preparation for cold spraying on polymers, Surface and Coatings Technology, Volume 450 (2022), p. 128993 | DOI:10.1016/j.surfcoat.2022.128993
- , 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA) (2021), p. 1 | DOI:10.1109/iclpandsipda54065.2021.9627475
- A Laboratory Investigation of the Probable Mechanisms of the Action of an Artificial Thunderstorm Cell on Model Aircraft Radomes, Atmosphere, Volume 12 (2021) no. 12, p. 1637 | DOI:10.3390/atmos12121637
- Transport Characteristics of the Electrification and Lightning of the Gas Mixture Representing the Atmospheres of the Solar System Planets, Atmosphere, Volume 12 (2021) no. 4, p. 438 | DOI:10.3390/atmos12040438
- Response of electroless copper coated CFRP laminates to emulated lightning strikes, Composites Part A: Applied Science and Manufacturing, Volume 140 (2021), p. 106184 | DOI:10.1016/j.compositesa.2020.106184
- An experimental study of impulse-current-induced mechanical effects on laminated carbon fibre-reinforced polymer composites, Composites Part B: Engineering, Volume 225 (2021), p. 109245 | DOI:10.1016/j.compositesb.2021.109245
- Thermal dynamic damage of aircraft composite material suffered from lightning channel attachment based on moving mesh method, Composites Science and Technology, Volume 214 (2021), p. 109003 | DOI:10.1016/j.compscitech.2021.109003
- Damage Identification on Impact and Lightning Damage of Flax Composite Laminates (Linum usitatissimum) Using Long-Pulse Thermography of a Low-Resolution Infrared Camera, Frontiers in Materials, Volume 8 (2021) | DOI:10.3389/fmats.2021.618461
- Analysis of Electromagnetic Reflection Loss for Mesh Structure with A16061 MMC for Aerospace Applications, IOP Conference Series: Materials Science and Engineering, Volume 1206 (2021) no. 1, p. 012021 | DOI:10.1088/1757-899x/1206/1/012021
- Electromagnetic shielding effectiveness for A16061 metal matrix composite based mesh wire reinforced with Flyash for oblique incidence of EM wave, IOP Conference Series: Materials Science and Engineering, Volume 1206 (2021) no. 1, p. 012025 | DOI:10.1088/1757-899x/1206/1/012025
- Analysis of shielding effectiveness and mechanical properties of metal matrix composite AL6061 reinforced with Al2O3 and fly ash for oblique incidence of EM wave, International Journal of Intelligent Computing and Cybernetics, Volume 14 (2021) no. 3, p. 398 | DOI:10.1108/ijicc-01-2021-0014
- Analysis of Electromagnetic Shielding Effectiveness Properties of Al6061 Metal Matrix Composites at X-Band for Aerospace Applications, Microelectronics, Electromagnetics and Telecommunications, Volume 655 (2021), p. 467 | DOI:10.1007/978-981-15-3828-5_49
- The Influence of Sonication Processing Conditions on Electrical and Mechanical Properties of Single and Hybrid Epoxy Nanocomposites Filled with Carbon Nanoparticles, Polymers, Volume 13 (2021) no. 23, p. 4128 | DOI:10.3390/polym13234128
- Study of Mechanical Properties and EMI Shielding Behaviour of Al6061 Hybrid Metal Matrix Composites, Research Anthology on Reliability and Safety in Aviation Systems, Spacecraft, and Air Transport (2021), p. 894 | DOI:10.4018/978-1-7998-5357-2.ch035
- Thermal damage analysis of aircraft composite laminate suffered from lightning swept stroke and arc propagation, Chinese Journal of Aeronautics, Volume 33 (2020) no. 4, p. 1242 | DOI:10.1016/j.cja.2019.07.028
- Design of Corrosion Protective and Antistatic Hybrid Sol-Gel Coatings on 6XXX AlMgSi Alloys for Aerospace Application, Coatings, Volume 10 (2020) no. 5, p. 441 | DOI:10.3390/coatings10050441
- Electrically conductive carbon fiber layers as lightning strike protection for non-conductive epoxy-based CFRP substrate, Journal of Composite Materials, Volume 54 (2020) no. 29, p. 4547 | DOI:10.1177/0021998320935946
- Thermosetting Composite Materials in Aerostructures, Revolutionizing Aircraft Materials and Processes (2020), p. 57 | DOI:10.1007/978-3-030-35346-9_3
- Effect of the electric current on the stress relaxation behaviour of CFRP composites, Thin-Walled Structures, Volume 149 (2020), p. 106659 | DOI:10.1016/j.tws.2020.106659
- Sesame-cookie topography silver nanoparticles modified carbon nanotube paper for enhancing lightning strike protection, Carbon, Volume 143 (2019), p. 204 | DOI:10.1016/j.carbon.2018.11.022
- Study of Mechanical Properties and EMI Shielding Behaviour of Al6061 Hybrid Metal Matrix Composites, International Journal of Surface Engineering and Interdisciplinary Materials Science, Volume 7 (2019) no. 2, p. 48 | DOI:10.4018/ijseims.2019070104
- Lightning ablation suppression of aircraft carbon/epoxy composite laminates by metal mesh, Journal of Materials Science Technology, Volume 35 (2019) no. 11, p. 2693 | DOI:10.1016/j.jmst.2019.07.010
- Investigation on temperature behavior of CFRP during lightning strike using experiment and simulation, Polymer Composites, Volume 40 (2019) no. 9, p. 3541 | DOI:10.1002/pc.25216
- Charge Control Strategy for Aircraft-Triggered Lightning Strike Risk Reduction, AIAA Journal, Volume 56 (2018) no. 5, p. 1988 | DOI:10.2514/1.j056406
- Experimental and numerical study on residual strength of aircraft carbon/epoxy composite after lightning strike, Aerospace Science and Technology, Volume 75 (2018), p. 304 | DOI:10.1016/j.ast.2018.01.029
- Plasma Polypyrrole Coated Hybrid Composites with Improved Mechanical and Electrical Properties for Aerospace Applications, Applied Composite Materials, Volume 25 (2018) no. 3, p. 661 | DOI:10.1007/s10443-017-9644-2
- Statistical evaluation of damage size based on amplitude mapping of damage-induced ultrasonic wavefield, IOP Conference Series: Materials Science and Engineering, Volume 405 (2018), p. 012006 | DOI:10.1088/1757-899x/405/1/012006
- Metallization of Carbon Fiber Reinforced Polymers for Lightning Strike Protection, Journal of Materials Engineering and Performance, Volume 27 (2018) no. 10, p. 5205 | DOI:10.1007/s11665-018-3609-y
- Evolution simulation of lightning discharge based on a magnetohydrodynamics method, Plasma Science and Technology, Volume 20 (2018) no. 7, p. 075301 | DOI:10.1088/2058-6272/aab841
- Effect of the electric current on the impact fatigue strength of CFRP composites, Composite Structures, Volume 182 (2017), p. 191 | DOI:10.1016/j.compstruct.2017.09.032
- Novel Lightning Strike-Protected Polymeric Composite for Future Generation Aviation, Journal of Aerospace Engineering, Volume 30 (2017) no. 1 | DOI:10.1061/(asce)as.1943-5525.0000660
- Computational study of glow corona discharge in wind: Biased conductor, Journal of Electrostatics, Volume 89 (2017), p. 1 | DOI:10.1016/j.elstat.2017.06.005
- Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials, Nanotechnology, Volume 28 (2017) no. 9, p. 094001 | DOI:10.1088/1361-6528/aa583d
- Energy balance and assessment of the pressure build-up around a bolt fastener due to sparking during a lightning impact, The European Physical Journal Applied Physics, Volume 77 (2017) no. 2, p. 20801 | DOI:10.1051/epjap/2017160467
- Study of a Particle Based Films Cure Process by High-Frequency Eddy Current Spectroscopy, Coatings, Volume 7 (2016) no. 1, p. 3 | DOI:10.3390/coatings7010003
- Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike, Composite Structures, Volume 145 (2016), p. 226 | DOI:10.1016/j.compstruct.2016.03.005
- Electrical and hydrodynamic characterization of a high current pulsed arc, Journal of Physics D: Applied Physics, Volume 49 (2016) no. 18, p. 185204 | DOI:10.1088/0022-3727/49/18/185204
- Arc reattachment driven by a turbulent boundary layer: implications for the sweeping of lightning arcs along aircraft, Journal of Physics D: Applied Physics, Volume 49 (2016) no. 37, p. 375204 | DOI:10.1088/0022-3727/49/37/375204
- The effect of reaction medium on the conductivity and morphology of polyaniline doped with camphorsulfonic acid, Synthetic Metals, Volume 214 (2016), p. 45 | DOI:10.1016/j.synthmet.2016.01.017
- The combination of carbon nanotube buckypaper and insulating adhesive for lightning strike protection of the carbon fiber/epoxy laminates, Carbon, Volume 94 (2015), p. 101 | DOI:10.1016/j.carbon.2015.06.026
- , 2014 International Conference on Lightning Protection (ICLP) (2014), p. 1952 | DOI:10.1109/iclp.2014.6973447
- Lightning in aeronautics, Journal of Physics: Conference Series, Volume 550 (2014), p. 012001 | DOI:10.1088/1742-6596/550/1/012001
- Lightning strike protection of composites, Progress in Aerospace Sciences, Volume 64 (2014), p. 1 | DOI:10.1016/j.paerosci.2013.07.002
- A new electric dipole model for lightning-aircraft electrodynamics, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Volume 33 (2013) no. 1/2, p. 540 | DOI:10.1108/compel-12-2012-0385
- Breakdown of model aircraft radome dielectric shell in artificial charged aerosol clouds, Technical Physics Letters, Volume 37 (2011) no. 10, p. 907 | DOI:10.1134/s1063785011100154
- , 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845877
- Experimental study of the effect of artificial charged aqueous aerosol cloud on model aircraft radome, Technical Physics Letters, Volume 36 (2010) no. 9, p. 848 | DOI:10.1134/s106378501009021x
- The effect of air density on atmospheric electric fields required for lightning initiation from a long airborne object, Atmospheric Research, Volume 86 (2007) no. 2, p. 126 | DOI:10.1016/j.atmosres.2007.04.001
- A numerical modelling of an electric arc and its interaction with the anode: part III. Application to the interaction of a lightning strike and an aircraft in flight, Journal of Physics D: Applied Physics, Volume 39 (2006) no. 10, p. 2294 | DOI:10.1088/0022-3727/39/10/045
- Voltage drop along a lightning channel during strikes to aircraft, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 377 | DOI:10.1016/j.atmosres.2004.11.033
Cité par 79 documents. Sources : Crossref
Commentaires - Politique