Comptes Rendus
Article historique
Radial point interpolation method and high-order continuation for solving nonlinear transient heat conduction problems
Comptes Rendus. Mécanique, Volume 348 (2020) no. 8-9, pp. 745-758.

In this work, we propose the investigation of unsteady nonlinear heat conduction by using the radial point interpolation method (RPIM) in high-order continuation coupled with homotopy transformation for the first time. In this resolution strategy, the Euler implicit time scheme is used to transform the unsteady nonlinear continuous problem into a sequence of stationary continuous problems. Moreover, by using the RPIM, we transform the sequence of stationary nonlinear continuous problems into discrete problems. Then, homotopy transformation is applied by introducing an arbitrary invertible pre-conditioner [K * ] and a dimensionless parameter a. These nonlinear problems are transformed into a sequence of linear problems thanks to Taylor series expansions used in a continuation technique to compute the whole solution branch by branch. Numerical examples have been investigated to show the accuracy and efficiency of the proposed approach in this type of problem. The results obtained by the proposed high-order homotopic continuation with the RPIM are compared with those computed by the Newton–Raphson method coupled with the RPIM, high-order homotopic continuation with moving least squares, and high-order homotopic continuation with the finite element method.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.49
Mots clés : Radial point interpolation method (RPIM), Homotopy transformation, High-order continuation, Heat conduction, Thermal conductivity
Said Mesmoudi 1 ; Omar Askour 1 ; Bouazza Braikat 1

1 Laboratoire d’Ingénierie et Matériaux, Faculté des Sciences Ben M’sik, Hassan II University of Casablanca, Avenue Driss El Harti, B.P. 7955 Sidi Othman, Casablanca, Morocco
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2020__348_8-9_745_0,
     author = {Said Mesmoudi and Omar Askour and Bouazza Braikat},
     title = {Radial point interpolation method and high-order continuation for solving nonlinear transient heat conduction problems},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {745--758},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {8-9},
     year = {2020},
     doi = {10.5802/crmeca.49},
     language = {en},
}
TY  - JOUR
AU  - Said Mesmoudi
AU  - Omar Askour
AU  - Bouazza Braikat
TI  - Radial point interpolation method and high-order continuation for solving nonlinear transient heat conduction problems
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 745
EP  - 758
VL  - 348
IS  - 8-9
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.49
LA  - en
ID  - CRMECA_2020__348_8-9_745_0
ER  - 
%0 Journal Article
%A Said Mesmoudi
%A Omar Askour
%A Bouazza Braikat
%T Radial point interpolation method and high-order continuation for solving nonlinear transient heat conduction problems
%J Comptes Rendus. Mécanique
%D 2020
%P 745-758
%V 348
%N 8-9
%I Académie des sciences, Paris
%R 10.5802/crmeca.49
%G en
%F CRMECA_2020__348_8-9_745_0
Said Mesmoudi; Omar Askour; Bouazza Braikat. Radial point interpolation method and high-order continuation for solving nonlinear transient heat conduction problems. Comptes Rendus. Mécanique, Volume 348 (2020) no. 8-9, pp. 745-758. doi : 10.5802/crmeca.49. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.49/

[1] A. Khosravifard; M. R. Hematiyan; L. Marin Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method, Appl. Math. Modelling, Volume 35 (2011) no. 9, pp. 4157-4174 | DOI | MR | Zbl

[2] X. Zhang; H. Xiang A fast meshless method based on proper orthogonal decomposition for the transient heat conduction problems, Int. J. Heat Mass Transfer, Volume 84 (2015), pp. 729-739 | DOI

[3] M. Dehghan; M. S. Valipour; S. Saedodin Temperature-dependent conductivity in forced convection of heat exchangers filled with porous media: a perturbation solution, Energy Convers. Manage., Volume 91 (2015), pp. 259-266 | DOI

[4] K. Yang; H. F. Peng; J. Wang; C. H. Xing; X. W. Gao Radial integration BEM for solving transient nonlinear heat conduction with temperature-dependent conductivity, Int. J. Heat Mass Transfer, Volume 108 (2017), pp. 1551-1559 | DOI

[5] K. Yang; W. Z. Feng; J. Wang; X. W. Gao RIBEM for 2D and 3D nonlinear heat conduction with temperature dependent conductivity, Eng. Anal. Bound. Elem., Volume 87 (2018), pp. 1-8 | DOI | MR | Zbl

[6] J. Y. Chang; C. C. Tsai; D. L. Young Homotopy method of fundamental solutions for solving nonlinear heat conduction problems, Eng. Anal. Bound. Elem., Volume 108 (2019), pp. 179-191 | DOI | MR

[7] J. C. Álvarez-Hostos; A. D. Bencomo; E. S. Puchi-Cabrera; V. D. Fachinotti; B. Tourn; J. C. Salazar-Bove Implementation of a standard stream-upwind stabilization scheme in the element-free Galerkin based solution of advection-dominated heat transfer problems during solidification in direct chill casting processes, Eng. Anal. Bound. Elem., Volume 106 (2019), pp. 170-181 | DOI | MR | Zbl

[8] P. R. Lancaster; K. Salkauskas Surfaces generated by moving least squares methods, Math. Comput., Volume 155 (1981), pp. 141-158 | DOI | MR | Zbl

[9] G. R. Liu; Y. T. Gu A point interpolation method for two-dimensional solids, Int. J. Numer. Methods Eng., Volume 50 (2001) no. 4, pp. 937-951 | DOI | Zbl

[10] J. G. Wang; G. R. Liu A point interpolation meshless method based on radial basis functions, Int. J. Numer. Methods Eng., Volume 54 (2002) no. 11, pp. 1623-1648 | DOI | Zbl

[11] G. R. Liu; Y. T. Gu An Introduction to Meshfree Methods and their Programming, Springer Science & Business Media, 2005

[12] V. P. Nguyen; T. Rabczuk; S. Bordas; M. Duflot Meshless methods: a review and computer implementation aspects, Math. Comput. Simul., Volume 79 (2008) no. 3, pp. 763-813 | DOI | MR | Zbl

[13] M. Najafi; V. Enjilela Natural convection heat transfer at high Rayleigh numbers-extended meshless local Petrov-Galerkin (MLPG) primitive variable method, Eng. Anal. Bound. Elem., Volume 44 (2014), pp. 170-184 | DOI | MR | Zbl

[14] R. Wang; L. Zhang; D. Hu; C. Liu; X. Shen; C. Cho; B. Li A novel approach to impose periodic boundary condition on braided composite RVE model based on RPIM, Compos. Struct., Volume 163 (2017), pp. 77-88 | DOI

[15] X. Y. Cui; S. Z. Feng; G. Y. Li A Cell-based Smoothed Radial Point Interpolation Method (CS-RPIM) for heat transfer analysis, Eng. Anal. Bound. Elem., Volume 40 (2014), pp. 147-153 | DOI | MR | Zbl

[16] O. Bourihane; B. Braikat; M. Jamal; F. Mohri; N. Damil Dynamic analysis of a thin-walled beam with open cross section subjected to dynamic loads using a high-order implicit algorithm, Eng. Struct., Volume 120 (2016), pp. 133-146 | DOI

[17] F. Massa; I. Turpin; T. Tison From homotopy perturbation technique to reduced order model for multiparametric modal analysis of large finite element models, Mech. Syst. Signal Process., Volume 96 (2017), pp. 291-302 | DOI

[18] Y. Guevel; G. Girault; J. M. Cadou Numerical comparisons of high-order nonlinear solvers for the transient navier-stokes equations based on homotopy and perturbation techniques, J. Comput. Appl. Math., Volume 289 (2015), pp. 356-370 | DOI | MR | Zbl

[19] B. Claude; L. Duigou; G. Girault; J. M. Cadou Study of damped vibrations of a vibroacoustic interior problem with viscoelastic sandwich structure using a High Order Newton solver, J. Sound Vib., Volume 462 (2019), 114947 | DOI

[20] A. Timesli; B. Braikat; H. Lahmam; H. Zahrouni An implicit algorithm based on continuous moving least square to simulate material mixing in friction stir welding process, Modelling Simul. Eng., Volume 2013 (2013), pp. 1-14 | DOI

[21] A. Timesli; B. Braikat; H. Lahmam; H. Zahrouni A new algorithm based on moving least square method to simulate material mixing in friction stir welding, Eng. Anal. Bound. Elem., Volume 50 (2015), pp. 372-380 | DOI

[22] Y. Belaasilia; A. Timesli; B. Braikat; M. Jamal A numerical mesh-free model for elasto-plastic contact problems, Eng. Anal. Bound. Elem., Volume 82 (2017), pp. 68-78 | DOI | MR | Zbl

[23] S. Mesmoudi; A. Timesli; B. Braikat; H. Lahmam; H. Zahrouni A 2D mechanical-thermal coupled model to simulate material mixing observed in friction stir welding process, Eng. Comput., Volume 33 (2017) no. 4, pp. 885-895 | DOI

[24] Y. Belaasilia; B. Braikat; M. Jamal High order mesh-free method for frictional contact, Eng. Anal. Bound. Elem., Volume 94 (2018), pp. 103-112 | DOI | MR | Zbl

[25] M. Fouaidi; A. Hamdaoui; M. Jamal; B. Braikat A high order mesh-free method for buckling and post-buckling analysis of shells, Eng. Anal. Bound. Elem., Volume 99 (2019), pp. 89-99 | DOI | MR | Zbl

[26] M. Rammane; S. Mesmoudi; A. Tri; B. Braikat; N. Damil Solving the incompressible fluid flows by a high-order mesh-free approach, Int. J. Numer. Methods Fluids, Volume 92 (2020) no. 5, pp. 422-435 | DOI | MR

[27] S. Mesmoudi; B. Braikat; H. Lahmam; H. Zahrouni Three-dimensional numerical simulation of material mixing observed in FSW using a mesh-free approach, Eng. Comput., Volume 36 (2020), pp. 13-27 | DOI

[28] M. Fouaidi; A. Hamdaoui; M. Jamal; B. Braikat Numerical analysis of single-layered graphene sheets by a mesh-free approach, Eng. Comput. (2020), pp. 1-14 (in press)

[29] O. Askour; S. Mesmoudi; B. Braikat On the use of Radial Point Interpolation Method (RPIM) in a high order continuation for the resolution of the geometrically nonlinear elasticity problems, Eng. Anal. Bound. Elem., Volume 110 (2020), pp. 69-79 | DOI | MR | Zbl

[30] B. Yun; W. T. Ang A dual-reciprocity boundary element approach for axisymmetric nonlinear time-dependent heat conduction in a nonhomogeneous solid, Eng. Anal. Bound. Elem., Volume 34 (2010) no. 8, pp. 697-706 | DOI | MR | Zbl

[31] P. W. Li; W. Chen; Z. J. Fu; C. M. Fan Generalized finite difference method for solving the double-diffusive natural convection in fluid-saturated porous media, Eng. Anal. Bound. Elem., Volume 95 (2018), pp. 175-186 | MR | Zbl

[32] M. Mierzwiczak; J. A. Kołodziej The determination temperature-dependent thermal conductivity as inverse steady heat conduction problem, Int. J. Heat Mass Transfer, Volume 54 (2011) no. 4, pp. 790-796 | DOI | Zbl

[33] M. Mierzwiczak; W. Chen; Z. J. Fu The singular boundary method for steady-state nonlinear heat conduction problem with temperature-dependent thermal conductivity, Int. J. Heat Mass Transfer, Volume 91 (2015), pp. 205-217 | DOI

[34] K. Yang; G. H. Jiang; H. F. Peng; X. W. Gao A new modified Levenberg–Marquardt algorithm for identifying the temperature-dependent conductivity of solids based on the radial integration boundary element method, Int. J. Heat Mass Transfer, Volume 144 (2019), 118615 | DOI

[35] M. I. P. Hidayat Meshless local B-spline collocation method for heterogeneous heat conduction problems, Eng. Anal. Bound. Elem., Volume 101 (2019), pp. 76-88 | DOI | MR | Zbl

[36] J. Singh; K. K. Shukla Nonlinear flexural analysis of laminated composite plates using RBF based meshless method, Compos. Struct., Volume 94 (2012) no. 5, pp. 1714-1720 | DOI

[37] J. Singh; K. K. Shukla Nonlinear flexural analysis of functionally graded plates under different loadings using RBF based meshless method, Eng. Anal. Bound. Elem., Volume 36 (2012) no. 12, pp. 1819-1827 | DOI | Zbl

[38] J. Li; X. Feng; Y. He RBF-based meshless Local Petrov Galerkin Method for the multi-dimensional convection–diffusion-reaction equation, Eng. Anal. Bound. Elem., Volume 98 (2019), pp. 46-53 | DOI | MR | Zbl

[39] B. Cochelin A path-following technique via an asymptotic-numerical method, Comput. Struct., Volume 53 (1994), pp. 1181-1192 | DOI | Zbl

[40] K. Yang; J. Wang; J. M. Du; H. F. Peng; X. W. Gao Radial integration boundary element method for nonlinear heat conduction problems with temperature-dependent conductivity, Int. J. Heat Mass Transfer, Volume 104 (2017), pp. 1145-1151 | DOI

[41] Y. Gu; L. Wang; W. Chen; C. Zhang; X. He Application of the meshless generalized finite difference method to inverse heat source problems, Int. J. Heat Mass Transfer, Volume 108 (2017), pp. 721-729 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A secure version of asymptotic numerical method via convergence acceleration

Pascal Ventura; Michel Potier-Ferry; Hamid Zahrouni

C. R. Méca (2020)


Optimal influence cover for an element free Galerkin MFree method based on artificial neural network

Imane Hajjout; Manal Haddouch; El Mostapha Boudi

C. R. Méca (2020)


Matrix-fracture exchange in a fractured porous medium: stochastic upscaling

Moussa Kfoury; Rachid Ababou; Benoit Nœtinger; ...

C. R. Méca (2004)