Comptes Rendus
Short paper
Deterministic optimization techniques to calibrate parameters in a wildland fire propagation model
Comptes Rendus. Mécanique, Volume 348 (2020) no. 8-9, pp. 759-768.

To fight against forest fires, simple and improved models are more searched out due to the fact they are more easily understandable by the users. This actual model is part of the fire propagation models within a network. It is simple and easy to implement. However, it depends on several parameters that are difficult to measure or estimate precisely beforehand. The prediction by this model is therefore insufficient. A deterministic optimization method is introduced to calibrate its parameters. The optimized model was tested on several laboratory experiments and on two large-scale experimental fires. The comparison of the model results with those of the experiment shows a very significant improvement in its prediction with the optimal parameters.

Dans la lutte contre les feux de forêt, les modèles simples et améliorés sont plus recherchés car plus aisément compréhensibles par les utilisateurs. Le présent modèle fait partie des modèles de propagation de feu à l’intérieur d’un réseau. Il est simple et facile à mettre en œuvre. Cependant, il dépend de plusieurs paramètres difficiles à mesurer ou à estimer avec précision au préalable. La prédiction par ce modèle est de ce fait insuffisante. Par conséquent, une méthode déterministe d’optimisation est introduite pour calibrer ses paramètres. Le modèle optimisé a été testé sur plusieurs feux de laboratoires et sur deux feux expérimentaux à grande échelle. La comparaison des résultats du modèle avec ceux de l’expérience montre une amélioration très significative de sa prédiction avec les paramètres optimaux.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.58
Keywords: Optimization method, Calibration parameter, Rate of spread, Fire propagation, Firefighting, Fire behavior, Modeling
M. H. Tchiekre 1; A. D. V. Brou 2; J. K. Adou 1

1 Université FHB d’Abidjan, UFR Math. Info., 22 BP 582 Abidjan 22, Côte d’Ivoire
2 Université JLG de Daloa, UFR Environnement, BP 150 Daloa, Côte d’Ivoire
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2020__348_8-9_759_0,
     author = {M. H. Tchiekre and A. D. V. Brou and J. K. Adou},
     title = {Deterministic optimization techniques to calibrate parameters in a wildland fire propagation model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {759--768},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {8-9},
     year = {2020},
     doi = {10.5802/crmeca.58},
     language = {en},
}
TY  - JOUR
AU  - M. H. Tchiekre
AU  - A. D. V. Brou
AU  - J. K. Adou
TI  - Deterministic optimization techniques to calibrate parameters in a wildland fire propagation model
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 759
EP  - 768
VL  - 348
IS  - 8-9
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.58
LA  - en
ID  - CRMECA_2020__348_8-9_759_0
ER  - 
%0 Journal Article
%A M. H. Tchiekre
%A A. D. V. Brou
%A J. K. Adou
%T Deterministic optimization techniques to calibrate parameters in a wildland fire propagation model
%J Comptes Rendus. Mécanique
%D 2020
%P 759-768
%V 348
%N 8-9
%I Académie des sciences, Paris
%R 10.5802/crmeca.58
%G en
%F CRMECA_2020__348_8-9_759_0
M. H. Tchiekre; A. D. V. Brou; J. K. Adou. Deterministic optimization techniques to calibrate parameters in a wildland fire propagation model. Comptes Rendus. Mécanique, Volume 348 (2020) no. 8-9, pp. 759-768. doi : 10.5802/crmeca.58. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.58/

[1] B. Porterie; D. Morvan; J. C. Loraud; M. Larini Firespread through fuel beds: Modeling of wind-aided fires and induced hydrodynamics, Phys. Fluids, Volume 12 (2000), pp. 1762-1782 | DOI | Zbl

[2] R. R. Linn; P. Cunningham Numerical simulations of grass fires using a coupled atmosphere-fire model: Basic fire behavior and dependence on wind speed, J. Geophys. Res., Volume 110 (2005), D13107

[3] W. Mell; M. A. Jenkins; J. Gould; P. Cheney A physics-based approach to modelling grassland fires, Int. J. Wildland Fire, Volume 16 (2007), pp. 1-22 | DOI

[4] E. Koo; P. Pagni; S. Stephens; J. Huff; J. Woycheese; D. Weise A simple physical model for forest fire spread rate, Fire Saf Sci., Volume 8 (2005), pp. 851-862 | DOI

[5] S. Yassemi; S. Dragićević; M. Schmidt Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour, Ecol. Model., Volume 210 (2008), pp. 71-84 | DOI

[6] J. K. Adou; Y. Billaud; D. A. Brou; J.-P. Clerc; J.-L. Consalvi; A. Fuentes; A. Kaiss; F. Nmira; B. Porterie; L. Zekri; N. Zekri Simulating wildfire patterns using a small-world network model, Ecol Model., Volume 221 (2010), pp. 1463-1471 | DOI

[7] P.-A. Santoni; J.-B. Filippi; J.-H. Balbi; F. Bosseur Wildland fire behaviour case studies and fuel models for landscape-scale fire modeling, J. Combust., Volume 2011 (2011), pp. 1-12 | DOI

[8] A. S. Bova; W. E. Mell; C. M. Hoffman A comparison of level set and marker methods for the simulation of wildland fire front propagation, Int. J. Wildland Fire, Volume 25 (2016), pp. 229-241 | DOI

[9] D. Ascoli; B. Giovanni; V. Giorgio Calibrating Rothermel’s fuel models by genetic algorithms, Adv. Forest Fire Res. (2014), pp. 102-106 (doi:10.14195/978-989-26-0884-6_10)

[10] T. Artés; A. Cencerrado; A. Cortés; T. Margalef Time aware genetic algorithm for forest fire propagation prediction: exploiting multi-core platforms: Time aware genetic algorithm for forest fire propagation prediction: exploiting multi-core platforms, Concurr. Comput. Pract. Exp., Volume 29 (2017), e3837 | DOI

[11] J. K. Adou; A. D. V. Brou; B. Porterie Modeling wildland fire propagation using a semi-physical network model, Case Stud. Fire Saf., Volume 4 (2015), pp. 11-18 | DOI

[12] F. M. White Heat Transfer, Addison-Wesley, Reading, MA, 1984

[13] K. M. Bryden; K. W. Ragland; C. J. Rutland Modeling thermally thick pyrolysis of wood, Biomass Bioenergy, Volume 22 (2002), pp. 41-53 | DOI

[14] B. V. Babu; A. S. Chaurasia Heat transfer and kinetics in the pyrolysis of shrinking biomass particle, Chem. Eng. Sci., Volume 59 (2004), pp. 1999-2012 | DOI

[15] K. Zeng; J. Soria; D. Gauthier; G. Mazza; G. Flamant Modeling of beech wood pellet pyrolysis under concentrated solar radiation, Renew. Energy, Volume 99 (2016), pp. 721-729 | DOI

[16] Scilab Company Scilab, 2019 (http://www.scilab.org)

[17] N. Cheney; J. Gould; W. Catchpole The influence of fuel, weather and fire shape variables on fire-spread in grasslands, Int. J. Wildland Fire, Volume 3 (1993), pp. 31-44 | DOI

[18] N. Cheney; J. Gould; W. Catchpole Prediction of fire spread in grasslands, Int. J. Wildland Fire, Volume 8 (1998), pp. 1-13 | DOI

[19] D. R. Weise; G. S. Biging A qualitative comparison of fire spread models incorporating wind and slope effects, For. Sci., Volume 43 (1997), pp. 170-180

[20] D. R. Weise; G. S. Biging Effects of wind velocity and slope on fire behavior, Fire Saf. Sci. - Proc. Fourth Int. Symp., Volume 4 (1994), pp. 1041-1051 | DOI

Cited by Sources:

Comments - Policy


Articles of potential interest

Evaluation of an optimized bush fire propagation model with large-scale fire experiments

A. David V. Brou; Aya Brigitte N’Dri

C. R. Méca (2021)


Fifty years of progress in wildland fire modelling: from empirical to fully physical CFD models

Dominique Morvan; Gilbert Accary; Sofiane Meradji; ...

C. R. Méca (2022)


Un Réseau de Petit Monde local à sites pondérés pour les feux de forêts

Bernard Porterie; Nouredine Zekri; Jean-Pierre Clerc; ...

C. R. Phys (2005)