Comptes Rendus
Computational metallurgy and changes of scale / Métallurgie numérique et changements d'échelle
Microstructures and rheology of the Earth's upper mantle inferred from a multiscale approach
[Microstructures et rhéologie du manteau terrestre supérieur déduites d'une approche multi-échelle]
Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 304-315.

La forte anisotropie rhéologique des polycristaux d'olivine, associée à leur microstructure, est un aspect majeur affectant la dynamique du manteau terrestre supérieur. Des expériences de déformation sous haute pression et en rayonnement synchrotron de monocristaux d'olivine, complétées par des calculs ab initio de friction de réseau, montrent une transition du système « mou » depuis [100] vers [001] quand la pression et la température (et donc la profondeur in situ) augmentent. Nous avons introduit ces données à l'échelle du système de glissement dans l'extension du second-ordre du schéma auto-cohérent afin d'appréhender les évolutions de microstructure le long d'un écoulement typique sous une dorsale océanique.

The strongly anisotropic rheology of olivine polycrystals, associated to their microstructure, constitutes a key feature affecting the dynamics of the Earth's upper mantle. High pressure deformation experiments carried out on olivine single crystals under synchrotron radiation, together with estimations of lattice friction based on first-principle calculations, show a transition from easy [100] to easy [001] slips as pressure and temperature (thus depth) increases. We input these data at the slip system level into the second-order extension of the self-consistent scheme to assess microstructure evolution along a typical flow pattern beneath an oceanic spreading center.

Publié le :
DOI : 10.1016/j.crhy.2010.07.011
Keywords: Olivine, Dislocations, High pressure, Viscoplasticity, Polycrystal, Homogenization, Earth mantle
Mot clés : Olivine, Dislocations, Haute pression, Viscoplasticité, Polycristal, Homogénéisation, Manteau terrestre
Olivier Castelnau 1 ; Patrick Cordier 2 ; R.A. Lebensohn 3 ; Sébastien Merkel 2 ; Paul Raterron 2

1 PIMM, CNRS, arts et métiers ParisTech, 151, boulevard de l'Hopital, 75013 Paris, France
2 Unité matériaux et transformations, bâtiment C6, université Lille 1, 59655 Villeneuve d'Ascq, France
3 MST8 - MS G755, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
@article{CRPHYS_2010__11_3-4_304_0,
     author = {Olivier Castelnau and Patrick Cordier and R.A. Lebensohn and S\'ebastien Merkel and Paul Raterron},
     title = {Microstructures and rheology of the {Earth's} upper mantle inferred from a multiscale approach},
     journal = {Comptes Rendus. Physique},
     pages = {304--315},
     publisher = {Elsevier},
     volume = {11},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crhy.2010.07.011},
     language = {en},
}
TY  - JOUR
AU  - Olivier Castelnau
AU  - Patrick Cordier
AU  - R.A. Lebensohn
AU  - Sébastien Merkel
AU  - Paul Raterron
TI  - Microstructures and rheology of the Earth's upper mantle inferred from a multiscale approach
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 304
EP  - 315
VL  - 11
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.07.011
LA  - en
ID  - CRPHYS_2010__11_3-4_304_0
ER  - 
%0 Journal Article
%A Olivier Castelnau
%A Patrick Cordier
%A R.A. Lebensohn
%A Sébastien Merkel
%A Paul Raterron
%T Microstructures and rheology of the Earth's upper mantle inferred from a multiscale approach
%J Comptes Rendus. Physique
%D 2010
%P 304-315
%V 11
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2010.07.011
%G en
%F CRPHYS_2010__11_3-4_304_0
Olivier Castelnau; Patrick Cordier; R.A. Lebensohn; Sébastien Merkel; Paul Raterron. Microstructures and rheology of the Earth's upper mantle inferred from a multiscale approach. Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 304-315. doi : 10.1016/j.crhy.2010.07.011. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.011/

[1] T.W. Becker; S. Chevrot; V. Schulte-Pelkum; D.K. Blackman Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models, J. Geophys. Res., Volume 111 (2006), p. B08309 | DOI

[2] D.K. Blackman Use of mineral physics, with geodynamic modeling and seismology, to investigate flow in the Earth's mantle, Rep. Prog. Phys., Volume 70 (2007), pp. 659-689

[3] P. Raterron; S. Merkel In situ rheological measurements at extreme pressure and temperature using synchrotron X-ray diffraction and radiography, J. Synchr. Rad., Volume 16 (2009), pp. 748-756

[4] J. Durinck; A. Legris; P. Cordier Pressure sensitivity of olivine slip systems: first-principle calculations of generalized stacking faults, Phys. Chem. Miner., Volume 32 (2005), pp. 646-654

[5] J. Durinck; P. Carrez; P. Cordier Application of the Peierls–Nabarro model to dislocations in forsterite, Eur. J. Mineral., Volume 19 (2007), pp. 631-639

[6] J. Durinck; B. Devincre; L. Kubin; P. Cordier Modeling the plastic deformation of olivine by dislocation dynamics simulations, Am. Mineral., Volume 92 (2007), pp. 1346-1357

[7] P. Carrez; A.M. Walker; A. Metsue; P. Cordier Evidence from numerical modelling for 3D spreading of [001] screw dislocations in Mg2SiO4 forsterite, Philos. Mag., Volume 88 (2008), pp. 2477-2485

[8] H.R. Wenk; C.N. Tomé Modelling dynamic recrystallization of olivine aggregates deformed in simple shear, J. Geophys. Res., Volume 104 (1999), pp. 25513-25527

[9] A. Tommasi; D. Mainprice; G. Canova; Y. Chastel Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: implications for the upper mantle seismic anisotropy, J. Geophys. Res., Volume 105 (2000), pp. 7893-7908

[10] P. Ponte Castañeda Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. I – Theory, J. Mech. Phys. Solids, Volume 50 (2002), pp. 737-757

[11] M.I. Idiart; H. Moulinec; P. Ponte Castañeda; P. Suquet Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations, J. Mech. Phys. Solids, Volume 54 (2006), pp. 1029-1063

[12] R.A. Lebensohn; C.N. Tomé; P. Ponte Castañeda Self-consistent modeling of the mechanical behavior of viscoplastic polycrystals incorporating field fluctuations, Philos. Mag., Volume 87 (2007) no. 28, pp. 4287-4322

[13] O. Castelnau; D.K. Blackman; R.A. Lebensohn; P. Ponte Castañeda Micromechanical modelling of the viscoplastic behavior of olivine, J. Geophys. Res., Volume 113 (2008), p. B09202 | DOI

[14] O. Castelnau; R.A. Lebensohn; P. Ponte Castañeda; D.K. Blackman Earth mantle rheology inferred from homogenization theories (O. Cazacu, ed.), Multi-Scale Modeling of Heterogeneous Materials, Wiley, 2008 (ISBN: 9781848210479)

[15] H. Couvy; D.J. Frost; F. Heidelbach; K. Nyilas; T. Ungar; S. Mackwell; P. Cordier Shear deformation experiments of forsterite at 11 GPa–1400 °C in the multianvil apparatus, Eur. J. Mineral., Volume 16 (2004), pp. 877-889

[16] D. Mainprice; A. Tommasi; H. Couvy; P. Cordier; D.J. Frost Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle, Nature, Volume 433 (2005), pp. 731-733

[17] P. Raterron; J. Chen; L. Li; D. Weidner; P. Cordier Pressure-induced slip-system transition in forsterite: single-crystal rheological properties at mantle pressure and temperature, Am. Mineral., Volume 92 (2007), pp. 1436-1445

[18] H. Jung; W. Mo; H. Green Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine, Nat. Geosci., Volume 2 (2009), pp. 73-77

[19] P. Raterron; E. Amiguet; J. Chen; L. Li; P. Cordier Experimental deformation of olivine single crystals at mantle pressures and temperatures, Phys. Earth Planet. Interiors, Volume 172 (2009), pp. 74-83

[20] Z. Xu; Q. Wang; S. Ji; J. Chen; L. Zeng; J. Yang; F. Chen; F. Liang; H. Wenk Petrofabrics and seismic properties of garnet peridotite from UHP Sulu terrane (China): Implications for olivine deformation mechanism in a cold and dry subducting continental slab, Tectonophysics, Volume 421 (2006), pp. 111-127

[21] S. Ji; Q. Wang; Z. Xu Reply to the comment of S. Karato on “Petrofabrics and seismic properties of garnet peridotites from the USP Sulu Terrane (China)” by Xu et al. [Tectonophysics 421 (2006) 111–127], Tectonophysics, Volume 429 (2007), pp. 291-296

[22] S.I. Karato Comments on “Petrofabrics and seismic properties of garnet peridotites from the USP Sulu Terrane (China)” by Xu et al. [Tectonophysics 421 (2006) 111–127], Tectonophysics, Volume 429 (2007), pp. 287-289

[23] Q. Bai; S.J. Mackwell; D.L. Kohlstedt High-temperature creep of olivine single crystals; 1. Mechanical results for buffered samples, J. Geophys. Res., Volume 96 (1991), pp. 2441-2463

[24] J. Girard; J. Chen; P. Raterron; C. Holyoke Deformation of single crystal sample using D-DIA apparatus coupled with synchrotron X-rays: In situ stress and strain measurements at high pressure and temperature, J. Phys. Chem. Solids, Volume 71 ( August 2010 ) no. 8, pp. 1053-1058 | DOI

[25] A.M. Walker; B. Slater; J.D. Gale; K. Wright Predicting the structure of screw dislocations in nanoporous materials, Nat. Mater., Volume 3 (2004), pp. 715-720

[26] A.M. Walker; J.D. Gale; B. Slater; K. Wright Atomic scale modelling of the cores of dislocations in complex materials, part 1: methodology, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3227-3234

[27] A.M. Walker; J.D. Gale; B. Slater; K. Wright Atomic scale modelling of the cores of dislocations in complex materials, part 2: applications, Phys. Chem. Chem. Phys., Volume 7 (2005), pp. 3235-3242

[28] A.M. Walker Simulation of screw dislocations in wadsleyite, Phys. Chem. Miner., Volume 37 (2010) no. 5, pp. 301-310 | DOI

[29] R.E. Peierls On the size of a dislocation, Proc. R. Soc. Lond., Volume 52 (1940), pp. 34-37

[30] F.R.N. Nabarro Dislocations in a simple cubic lattice, Proc. R. Soc. Lond., Volume 59 (1947), pp. 256-272

[31] V. Vítek Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag., Volume 18 (1968), pp. 773-786

[32] J.W. Christian; V. Vítek Dislocations and stacking faults, Rep. Prog. Phys., Volume 33 (1970), pp. 307-411

[33] A. Metsue, Modélisation des structures de cœurs des dislocations dans les minéraux du manteau terrestre à l'aide du modèle de Peierls–Nabarro, Ph.D. thesis, Université Lille 1, Lille, France, 2010.

[34] A. Metsue; P. Carrez; C. Denoual; P. Cordier Plastic deformation of wadsleyite: IV. Dislocation core modelling based on the Peierls–Nabarro–Galerkin model, Acta Mater., Volume 58 (2010), pp. 1467-1478

[35] Y.B. Chastel; P.R. Dawson; H.-R. Wenk; K. Bennett Anisotropic convection with implications for the upper mantle, J. Geophys. Res., Volume 98 (1993), pp. 17757-17772

[36] J.W. Hutchinson Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Met. Trans. A, Volume 8 (1977) no. 9, pp. 1465-1469

[37] M.V. Nebozhyn; P. Gilormini; P. Ponte Castañeda Variational self-consistent estimates for viscoplastic polycrystals with highly anisotropic grains, C. R. Acad. Sci. Paris, Ser. IIB, Volume 328 (2000), pp. 11-17

[38] M.V. Nebozhyn; P. Gilormini; P. Ponte Castañeda Variational self-consistent estimates for cubic viscoplastic polycrystals: the effects of grain anisotropy and shape, J. Mech. Phys. Solids, Volume 49 (2001), pp. 313-340

[39] R.A. Lebensohn; P. Ponte Castañeda; R. Brenner; O. Castelnau Full-field vs. homogenization methods to predict microstructure–property relations for polycrystalline materials (S. Ghosh; D. Dimiduk, eds.), Computational Methods for Microstructure–Property Relationships, 2010

[40] P. Gilormini Insuffisance de l'extension classique du modèle autocohérent au comportement non linéaire, C. R. Acad. Sci. Paris, Ser. IIB, Volume 320 (1995), pp. 115-122

[41] H. Moulinec; P. Suquet A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998), pp. 69-94

[42] J.-C. Michel; H. Moulinec; P. Suquet A computational method based on augmented Lagrangians and Fast Fourier Transforms for composites with high contrast, Comput. Modelling Eng. Sci., Volume 1 (2000), pp. 79-88

[43] R.A. Lebensohn N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform, Acta Mater., Volume 49 (2001), pp. 2723-2737

[44] R.A. Lebensohn; C.S. Hartley; C.N. Tomé; O. Castelnau Modelling the mechanical response of polycrystals deforming by climb and glide, Philos. Mag., Volume 90 (2010) no. 5, pp. 567-583

[45] E. Kröner Self-consistent scheme and graded disorder in polycrystal elasticity, J. Phys. F: Metal Phys., Volume 8 (1978), pp. 2261-2267

[46] J.R. Willis Variational and related methods for the overall properties of composites, Adv. Appl. Mech., Volume 21 (1981), pp. 2-78

[47] R.A. Lebensohn; O. Castelnau; R. Brenner; P. Gilormini Study of the antiplane deformation of linear 2-D polycrystals with different microstructure, Int. J. Solids Struct., Volume 42 (2005), pp. 5441-5459

[48] R. Brenner; R. Lebensohn; O. Castelnau Elastic anisotropy and yield surface estimates, Int. J. Solids Struct., Volume 46 (2009), pp. 3018-3026

[49] G.W. Milton The coherent potential approximation is a realizable effective medium scheme, Commun. Math. Phys., Volume 99 (1985), pp. 483-503

[50] J.D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. A, Volume 241 (1957), pp. 376-396

[51] P. Ponte Castañeda; P. Suquet Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302

[52] R. Brenner; O. Castelnau; L. Badea Mechanical field fluctuations in polycrystals estimated by homogenization techniques, Proc. R. Soc. Lond. A, Volume 460 (2004) no. 2052, pp. 3589-3612

[53] P. Gilormini A critical evaluation for various nonlinear extensions of the self-consistent model, Sèvres, France, 1995 (A. Pineau; A. Zaoui, eds.), Kluwer Academic Publishers, Dordrecht (1996), pp. 67-74

[54] N.M. Ribe; Y. Yu A theory for plastic deformation and textural evolution of olivine polycrystals, J. Geophys. Res. B, Volume 5 (1991), pp. 8325-8335

[55] H. Mühlhaus; L. Moresi; M. Cada Emergent anisotropy and flow alignment in viscous rock, Pure Appl. Geophys., Volume 161 (2004), pp. 2451-2463

[56] E. Lev; B.H. Hager Prediction of anisotropy from flow models: A comparison of three methods, Geochem. Geophys. Geosyst., Volume 9 (2008) no. 7, p. Q07014 | DOI

[57] G.K. Batchelor An Introduction to Fluid Dynamics, Cambridge Univ. Press, New York, 1967

[58] D.K. Blackman; J.-M. Kendall Seismic anisotropy in the upper mantle 2. Predictions for current plate boundary flow models, Geochem. Geophys. Geosyst., Volume 3 (2002) no. 9, p. 8602

[59] O. Castelnau; D.K. Blackman; T.W. Becker Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow, Geophys. Res. Lett., Volume 36 (2009), p. L12304 | DOI

[60] H. Jung; S. Karato Water-induced fabric transitions in olivine, Science, Volume 293 (2001), pp. 1460-1463

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Multiscale modeling of the effective viscoplastic behavior of Mg 2 SiO 4 wadsleyite: bridging atomic and polycrystal scales

O. Castelnau; K. Derrien; S. Ritterbex; ...

C. R. Méca (2020)


Grain size effects and weakest link theory in 3D crystal plasticity simulations of polycrystals

Lionel Gélébart

C. R. Phys (2021)


The core structure of screw dislocations with [001] Burgers vector in Mg 2 SiO 4 olivine

Srinivasan Mahendran; Philippe Carrez; Patrick Cordier

C. R. Phys (2021)