Comptes Rendus
short paper
Numerical study of fluid flow at pore scale in packed bed of spheres and grains to obtain the REV
Comptes Rendus. Mécanique, Volume 348 (2020) no. 8-9, pp. 769-779.

This paper presents a numerical study to determine the Representative Elemental Volume (REV) size of a porous medium made of packed bed of non-deformable spheres and grains with morphology of Berea sandstone, by means of stochastic packing methods. The Navier–Stokes equations and CFD simulations at the pore level are used to calculate the macroscopic properties of the porous media, such as overall permeability, porosity, and tortuosity. The results obtained show that the values of these parameters present an asymptotic behavior, in the limit values of the REV. This allowed to establish a minimum size of REV, in which it is suggested to carry out the flow analyses to optimize the cost of computational resources without sacrificing the precision of the results.

Published online:
DOI: 10.5802/crmeca.62
Keywords: Permeability, CFD, Porous media, REV, Numerical simulation
Luis Carlos Martínez-Mendoza 1; Florencio Sánchez-Silva 1; Erik Fernando Martínez-Mendoza 1; Juan Antonio Cruz-Maya 2

1 Laboratorio de Ingeniería Térmica e Hidráulica Aplicada, ESIME, Unidad Profesional Adolfo López Mateos, IPN, Col. Zacatenco, Ciudad de México, 07738, México
2 Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, IPN, Av. IPN 2580, Col. La Laguna Ticomán, Ciudad de México, 07340, México
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Luis Carlos Mart{\'\i}nez-Mendoza and Florencio S\'anchez-Silva and Erik Fernando Mart{\'\i}nez-Mendoza and Juan Antonio Cruz-Maya},
     title = {Numerical study of fluid flow at pore scale in packed bed of spheres and grains to obtain the {REV}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {769--779},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {8-9},
     year = {2020},
     doi = {10.5802/crmeca.62},
     language = {en},
AU  - Luis Carlos Martínez-Mendoza
AU  - Florencio Sánchez-Silva
AU  - Erik Fernando Martínez-Mendoza
AU  - Juan Antonio Cruz-Maya
TI  - Numerical study of fluid flow at pore scale in packed bed of spheres and grains to obtain the REV
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 769
EP  - 779
VL  - 348
IS  - 8-9
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.62
LA  - en
ID  - CRMECA_2020__348_8-9_769_0
ER  - 
%0 Journal Article
%A Luis Carlos Martínez-Mendoza
%A Florencio Sánchez-Silva
%A Erik Fernando Martínez-Mendoza
%A Juan Antonio Cruz-Maya
%T Numerical study of fluid flow at pore scale in packed bed of spheres and grains to obtain the REV
%J Comptes Rendus. Mécanique
%D 2020
%P 769-779
%V 348
%N 8-9
%I Académie des sciences, Paris
%R 10.5802/crmeca.62
%G en
%F CRMECA_2020__348_8-9_769_0
Luis Carlos Martínez-Mendoza; Florencio Sánchez-Silva; Erik Fernando Martínez-Mendoza; Juan Antonio Cruz-Maya. Numerical study of fluid flow at pore scale in packed bed of spheres and grains to obtain the REV. Comptes Rendus. Mécanique, Volume 348 (2020) no. 8-9, pp. 769-779. doi : 10.5802/crmeca.62.

[1] W. G. Gray; C. T. Miller Examination of Darcy’s law for flow in porous media with variable porosity, Environ. Sci. Technol., Volume 38 (2004) no. 22, pp. 5895-5901 | DOI

[2] N. O. Shanti; V. W. L. Chan; S. R. Stock; F. De Carlo; K. Thornton; K. T. Faber X-ray micro-computed tomography and tortuosity calculations of percolating pore networks, Acta Mater., Volume 71 (2014), pp. 126-135 | DOI

[3] D. Wildenschild; A. P. Sheppard X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems, Adv. Water Resour., Volume 51 (2013), pp. 217-246 | DOI

[4] M. Siena Direct numerical simulation of fully saturated flow in natural porous media at the pore scale: a comparison of three computational systems, Comput. Geosci., Volume 19 (2015) no. 2, pp. 423-437 | DOI | MR

[5] P. Wang Lattice Boltzmann simulation of permeability and tortuosity for flow through dense porous media, Math. Probl. Eng., Volume 2014 (2014), pp. 1-7 | MR | Zbl

[6] D. Pavlidis; D. Lathouwers Realistic packed bed generation using small numbers of spheres, Nucl. Eng. Des., Volume 263 (2013), pp. 172-178 | DOI

[7] W. Sobieski The use of Path Tracking Method for determining the tortuosity field in a porous bed, Granul. Matter, Volume 18 (2016) no. 3, pp. 1-9 | DOI

[8] J. Bear Dynamics of Fluids In Porous Media, Vol. 1, American Elsevier Publishing Company, 1972

[9] D. Zhang; R. Zhang; S. Chen; W. E. Soll Pore scale study of flow in porous media: scale dependency, REV, and statistical REV, Geophys. Res. Lett., Volume 27 (2000) no. 8, pp. 1195-1198 | DOI

[10] C. Yuan; B. Chareyre; F. Darve Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume, Adv. Water Resour., Volume 95 (2016), pp. 109-124 | DOI

[11] G. O. Brown; H. T. Hsieh; D. A. Lucero Evaluation of laboratory dolomite core sample size using representative elementary volume concepts, Water Resour. Res., Volume 36 (2000), pp. 1199-1207 | DOI

[12] B. Vik; E. Bastesen; A. Skauge Evaluation of representative elementary volume for a vuggy carbonate rock-Part: Porosity, permeability, and dispersivity, J. Pet. Sci. Eng., Volume 112 (2013), pp. 36-47 | DOI

[13] H. G. Weller; G. Tabor; H. Jasak; C. Fureby A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys., Volume 12 (1998) no. 6, pp. 620-631 | DOI

[14] V. Šmilauer Yade Documentation, 2015 (2nd edition, software documentation of Yade-DEM with some theoretical background) | DOI

[15] G. O. Brown Henry Darcy and the making of a law, Water Resour. Res., Volume 38 (2002) no. 7, p. 11-1–11-12 | DOI

[16] L. Luquot; P. Gouze Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks, Chem. Geol., Volume 265 (2009) no. 1–2, pp. 148-159 | DOI

[17] V. M. Starov; V. G. Zhdanov Effective viscosity and permeability of porous media, Colloids Surf. A, Volume 192 (2001), pp. 363-375 | DOI

[18] S. Whitaker Flow in porous media I: A theoretical derivation of Darcy’s law, Transp. Porous Media, Volume 1 (1986) no. 1, pp. 3-25 | DOI

[19] B. Ghanbarian; A. G. Hunt; R. P. Ewing; M. Sahimi Tortuosity in porous media: a critical review, Soil Sci. Soc. Am. J., Volume 77 (2013) no. 5, pp. 1461-1477 | DOI

[20] W. Sobieski; S. Lipiński The analysis of the relations between porosity and tortuosity in granular beds, Tech. Sci., Volume 20 (2017) no. 1, pp. 75-85

[21] A. Duda; Z. Koza; M. Matyka Hydraulic tortuosity in arbitrary porous media flow, Phys. Rev. E, Volume 84 (2011) no. 3, pp. 1-8 | DOI

[22] J. Riege; W. Mayer; Y. van Havre FreeCAD, 2019 (Version 0.18) [Software], available from

[23] M. M. Ahmadi; S. Mohammadi; A. N. Hayati Analytical derivation of tortuosity and permeability of monosized spheres: A volume averaging approach, Phys. Rev. E, Volume 83 (2011) no. 2, pp. 1-8 | DOI

Cited by Sources:

Articles of potential interest

Four-dimensional X-ray micro-tomography imaging of dynamic processes in geosciences

Catherine Noiriel; François Renard

C. R. Géos (2022)

Authigenic kaolinite and sudoite in sandstones from the Paleoproterozoic Franceville sub-basin (Gabon)

Jérémie Aubineau; Olabode M. Bankole; Fabien Baron; ...

C. R. Géos (2021)

Multi-scale study of diffusion in composite grain–pore systems based on particles random walk

Hamza Oukili; Rachid Ababou; Gérald Debenest; ...

C. R. Méca (2021)