We introduce the three-dimensional Eringen system of equations for the nematodynamics of liquid crystals, announce the short time existence and uniqueness of strong solutions for the one-dimensional problem in the periodic case, and show the continuous dependence of the solution on the initial data.
Nous présentons le système tridimensionnel d’équations d’Eringen pour la nématodynamique des cristaux liquides, annonçons l’existence en temps et l’unicité de solutions fortes pour le problème unidimensionnel dans le cas périodique et montrons la dépendance continue de la solution sur les données initiales.
Revised:
Accepted:
Published online:
Mots-clés : Cristaux liquides, Équations d’Eringen, Nematodynamique, Existence et unicité, Lois de conservation, Micromomentum de molécules, Solution locale
Gregory A. Chechkin 1, 2, 3; Tudor S. Ratiu 4, 5, 6; Maxim S. Romanov 7

@article{CRMECA_2021__349_1_21_0, author = {Gregory A. Chechkin and Tudor S. Ratiu and Maxim S. Romanov}, title = {On the {Eringen} model for nematic liquid crystals}, journal = {Comptes Rendus. M\'ecanique}, pages = {21--27}, publisher = {Acad\'emie des sciences, Paris}, volume = {349}, number = {1}, year = {2021}, doi = {10.5802/crmeca.67}, language = {en}, }
TY - JOUR AU - Gregory A. Chechkin AU - Tudor S. Ratiu AU - Maxim S. Romanov TI - On the Eringen model for nematic liquid crystals JO - Comptes Rendus. Mécanique PY - 2021 SP - 21 EP - 27 VL - 349 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.67 LA - en ID - CRMECA_2021__349_1_21_0 ER -
Gregory A. Chechkin; Tudor S. Ratiu; Maxim S. Romanov. On the Eringen model for nematic liquid crystals. Comptes Rendus. Mécanique, Volume 349 (2021) no. 1, pp. 21-27. doi : 10.5802/crmeca.67. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.67/
[1] On the existence and uniqueness theorem in 2D nematodynamics. Finite speed of propagation of perturbations, Russ. Acad. Sci. Dokl. Math., Volume 91 (2015) no. 3, pp. 354-358 (Translated from Dokl. Akad. Nauk.462 (2015), no. 5, p. 519-523) | Zbl
[2] On unique solvability of the full three-dimensional Ericksen–Leslie system, C. R. Méc., Volume 344 (2016) no. 7, pp. 459-463 | DOI
[3] Existence and uniqueness theorems for the two-dimensional Ericksen–Leslie system, J. Math. Fluid Mech., Volume 18 (2016), pp. 571-589 | DOI | MR | Zbl
[4] Nematodynamics and random homogenization, Appl. Anal., Volume 95 (2016) no. 10, pp. 2243-2253 | DOI | MR | Zbl
[5] Existence and uniqueness theorems for the full three-dimensional Ericksen–Leslie system, Math. Models Methods Appl. Sci. (MAS), Volume 27 (2017) no. 5, pp. 807-843 | DOI | MR | Zbl
[6] A unified continuum theory of liquid crystals, ARI - Int. J. Phys. Eng. Sci., Volume 50 (1997), pp. 73-84 | MR | Zbl
[7] Microcontinium Field Theories. Volume II. Fluent Media, Springer-Verlag, New York, 2001
[8] The geometric structure of complex fluids, Adv. Appl. Math., Volume 42 (2009), pp. 176-275 | DOI | MR | Zbl
[9] Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968 | MR
Cited by Sources:
Comments - Policy