[Sur la solvabilité unique du système tridimensionnel complet d'Ericksen–Leslie]
Dans cet article, nous étudions le système tridimensionnel complet des équations d'Ericksen–Leslie decrivant la nématodynamique des cristaux liquides. Nous donnons la formulation des théorèmes d'existence en temps court et d'unicité des solutions fortes pour le problème de valeur initiale dans le cas périodique et dans un domaine borné avec conditions au bord de types Dirichlet et Neumann.
In this paper, we study the full three-dimensional Ericksen–Leslie system of equations for the nematodynamics of liquid crystals. We announce the short-time existence and uniqueness of strong solutions for the initial value problem in the periodic case and in a bounded domain with Dirichlet- and Neumann-type boundary conditions.
Accepté le :
Publié le :
Mot clés : Cristaux liquides, Équations d'Ericksen–Leslie, Nématodynamique, Existence et unicité, Champ directeur, Vitesse de propagation
Gregory A. Chechkin 1 ; Tudor S. Ratiu 2, 3 ; Maxim S. Romanov 1 ; Vyacheslav N. Samokhin 4
@article{CRMECA_2016__344_7_459_0, author = {Gregory A. Chechkin and Tudor S. Ratiu and Maxim S. Romanov and Vyacheslav N. Samokhin}, title = {On unique solvability of the full three-dimensional {Ericksen{\textendash}Leslie} system}, journal = {Comptes Rendus. M\'ecanique}, pages = {459--463}, publisher = {Elsevier}, volume = {344}, number = {7}, year = {2016}, doi = {10.1016/j.crme.2016.02.010}, language = {en}, }
TY - JOUR AU - Gregory A. Chechkin AU - Tudor S. Ratiu AU - Maxim S. Romanov AU - Vyacheslav N. Samokhin TI - On unique solvability of the full three-dimensional Ericksen–Leslie system JO - Comptes Rendus. Mécanique PY - 2016 SP - 459 EP - 463 VL - 344 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2016.02.010 LA - en ID - CRMECA_2016__344_7_459_0 ER -
%0 Journal Article %A Gregory A. Chechkin %A Tudor S. Ratiu %A Maxim S. Romanov %A Vyacheslav N. Samokhin %T On unique solvability of the full three-dimensional Ericksen–Leslie system %J Comptes Rendus. Mécanique %D 2016 %P 459-463 %V 344 %N 7 %I Elsevier %R 10.1016/j.crme.2016.02.010 %G en %F CRMECA_2016__344_7_459_0
Gregory A. Chechkin; Tudor S. Ratiu; Maxim S. Romanov; Vyacheslav N. Samokhin. On unique solvability of the full three-dimensional Ericksen–Leslie system. Comptes Rendus. Mécanique, Volume 344 (2016) no. 7, pp. 459-463. doi : 10.1016/j.crme.2016.02.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.02.010/
[1] Conservation laws for liquid crystals, Trans. Soc. Rheol., Volume 5 (1961), pp. 22-34
[2] Some constitutive equations for anisotropic fluids, Q. J. Mech. Appl. Math., Volume 19 (1966), pp. 357-370
[3] The Physics of Liquid Crystals, Clarendon Press, Oxford, 1993
[4] Nematic liquid crystals. Existence and uniqueness of periodic solutions to Ericksen–Leslie equations, Bull. Ivan Fedorov Mosc. State Univ. Print. Arts, Volume 12 (2012), pp. 139-151
[5] Existence and uniqueness theorems for two–dimensional Ericksen–Leslie system, J. Math. Fluid Mech. (2016) | DOI
[6] Existence and uniqueness theorems in two-dimensional nematodynamics. Finite speed of propagation, Russ. Acad. Sci. Dokl. Math., Volume 91 (2015) no. 3, pp. 354-358 (Translated from: Dokl. Akad. Nauk, 462, 5, 2015, pp. 519-523)
[7] Homogenization of the equations of the dynamics of nematic liquid crystals with inhomogeneous density, J. Math. Sci., Volume 186 (2012) no. 2, pp. 322-329 (Translated from: Probl. Mat. Anal., 66, 2012, pp. 167-173)
[8] Nematodynamics and Random Homogenization, Appl. Anal. (2015) (Online first) | DOI
[9] The geometric structure of complex fluids, Adv. Appl. Math., Volume 42 (2009), pp. 176-275
[10] Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena, Commun. Pure Appl. Math., Volume 42 (1989), pp. 789-814
[11] Nonparabolic dissipative system modeling the flow of liquid crystals, Commun. Pure Appl. Math., Volume XLVIII (1995), pp. 501-537
[12] Well-posedness and global attractors for liquid crystals on Riemannian manifolds, Commun. Partial Differ. Equ., Volume 27 (2002), pp. 1103-1137
[13] Global existence of solutions of the simplified Ericksen–Leslie system in dimension two, Calc. Var. Partial Differ. Equ., Volume 40 (2011), pp. 15-36
[14] Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 297-336
[15] Regularity and existence of global solutions to the Ericksen–Leslie system in | arXiv
[16] On the general Ericksen–Leslie system: Parodi's relation, well-posedness and stability, Arch. Ration. Mech. Anal., Volume 208 (2013), pp. 59-107
[17] Existence of regular solutions to the full liquid crystal system, 2013 | arXiv
[18] Strong solutions of the compressible nematic liquid crystal flow, J. Differ. Equ., Volume 252 (2012), pp. 2222-2265
[19] Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data, Arch. Ration. Mech. Anal., Volume 200 (2011), pp. 1-19
Cité par Sources :
☆ GAC was partially supported by RFBR grant 15-01-07920. TSR was partially supported by the NCCR SwissMAP grant of the Swiss National Science Foundation.
Commentaires - Politique