logo CRAS
Comptes Rendus. Mécanique

Note
Unbalance-induced whirl of a rotor supported by oil-film bearings
Comptes Rendus. Mécanique, Tome 349 (2021) no. 2, pp. 371-389.

This paper presents a nonlinear stability analysis of an unbalanced rotor-bearing system using the numerical continuation method and the numerical integration method. In this study, the effect of unbalance on journal motion is highlighted and a relationship is established between the bifurcation diagram of a balanced rotor and that of an unbalanced rotor. The results show that the stable operating speed range, the shaft motion type, the whirl speed and the chaotic motion occurrence depend on the unbalance level, the bearing geometry, the oil viscosity, and the speed range of unstable limit cycles existence.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmeca.83
Mots clés : Nonlinear stability analysis, Numerical continuation, Unbalanced rotor, Whirl speed, Chaotic motion, Hydrodynamic forces, Unstable limit cycles
@article{CRMECA_2021__349_2_371_0,
     author = {Radhouane Sghir},
     title = {Unbalance-induced whirl of a rotor supported by oil-film bearings},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {371--389},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {2},
     year = {2021},
     doi = {10.5802/crmeca.83},
     language = {en},
}
Radhouane Sghir. Unbalance-induced whirl of a rotor supported by oil-film bearings. Comptes Rendus. Mécanique, Tome 349 (2021) no. 2, pp. 371-389. doi : 10.5802/crmeca.83. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.83/

[1] M. Gardner; C. Myers; M. Savage; C. Taylor Analysis of limit-cycle response in fluid-film journal bearings using the method of multiple scales, Q. J. Mech. Appl. Math., Volume 38 (1985), pp. 1258-1264 | Article | MR 775828 | Zbl 0555.76040

[2] C.-J Meyers Bifurcation theory applied to oil whirl in plain cylindrical journal bearings, J. Appl. Mech., Volume 51 (1984), pp. 244-250 | Article | Zbl 0571.76048

[3] J.-K. Wang; M.-M. Khonsari On the hysteresis phenomenon associated with instability of rotor-bearing systems, J. Tribol., Volume 128 (2005), pp. 188-196 | Article

[4] J.-S. Guo Characteristics of the nonlinear hysteresis loop for rotor-bearing instability, 1995 (Dissertation, Case Western Reserve University)

[5] A. Boyaci; H. Hetzler; W. Seemann; C. Proppe; J. Wauer Analytical bifurcation analysis of a rotor supported by floating ring bearings, Nonlinear Dyn., Volume 57 (2009), pp. 497-507 | Article | Zbl 1176.70027

[6] M. Chouchane; R. Sghir Stability and bifurcation analysis of a flexible rotor-bearing system by numerical continuation, 10th International Conference on Vibrations in Rotating Machinery (2012) | Article

[7] R. Sghir; M. Chouchane Prediction of the nonlinear hysteresis loop for fluid-film bearings by numerical continuation, Proc. Inst. Mech. Eng. C, Volume 229 (2015), pp. 651-662 | Article

[8] R. Sghir; M. Chouchane Nonlinear stability analysis of a flexible rotor-bearing system by numerical continuation, J. Vib. Control, Volume 22 (2016), pp. 3079-3089 | Article | MR 3527670

[9] F.-F. Ehrich Observations of subcritical superharmonic and chaotic response in rotordynamics, J. Vib. Acoust., Volume 114 (1992), pp. 93-100 | Article

[10] M. Russo; R. Russo Parametric excitation instability of a rigid unbalanced rotor in short turbulent journal bearings, Proc. Inst. Mech. Eng. C, Volume 207 (1993), pp. 149-160 | Article

[11] F.-F. Ehrich Some observations of chaotic vibration phenomena in high-speed rotordynamics, J. Vib. Acoust., Volume 113 (1991), pp. 50-57 | Article

[12] G. Genta; C. Delprete; A. Tonoli; R. Vadori Conditions for noncircular whirling of nonlinear isotropic rotors, Nonlinear Dyn., Volume 4 (1993), pp. 153-181

[13] S.-K. Choi; S.-T. Noah Mode-locking and chaos in a jeffcott rotor with bearing clearances, J. Appl. Mech., Volume 61 (1994), pp. 131-138 | Article | Zbl 0925.70278

[14] G. Adiletta; A.-R. Guido; C. Rossi Chaotic motions of a rigid rotor in short journal bearings, Nonlinear Dyn., Volume 10 (1996), pp. 251-269 | Article

[15] G. Adiletta; A.-R. Guido; C. Rossi Nonlinear dynamics of a rigid unbalanced rotor in journal bearings. Part I: theoretical analysis, Nonlinear Dyn., Volume 14 (1997), pp. 57-87 | Article | Zbl 0910.70008

[16] G. Adiletta; A.-R. Guido; C. Rossi Nonlinear dynamics of a rigid unbalanced rotor in journal bearings, Part II: experimental analysis, Nonlinear Dyn., Volume 14 (1997), pp. 157-189 | Article

[17] G. Adiletta; E. Mancusi; S. Strano Nonlinear behavior analysis of a rotor on two-lobe wave journal bearings, Tribol. Int., Volume 44 (2011), pp. 42-54 | Article

[18] F. Chu; Z. Zhang Periodic, quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings, Int. J. Eng. Sci., Volume 35 (1997), pp. 963-973 | Article | Zbl 0912.70018

[19] P. Varney; I. Green Nonlinear phenomena, bifurcations, and routes to chaos in an asymmetrically supported rotor–stator contact system, J. Sound Vib., Volume 336 (2015), pp. 207-226 | Article

[20] J. Hong; P. Yu; D. Zhang; Y. Ma Nonlinear dynamic analysis using the complex nonlinear modes for a rotor system with an additional constraint due torub-impact, Mech. Syst. Signal Process., Volume 116 (2019), pp. 443-461 | Article

[21] R.-D. Brown; G. Drummond; P.-S. Addison Chaotic response of a short journal bearing, Proc. Inst. Mech. Eng. J., Volume 214 (2000), pp. 387-400 | Article

[22] H.-K. Yadav; S.-H. Upadhyay; S.-P. Harsha Study of effect of unbalanced forces for high speed rotor, Proc. Eng., Volume 64 (2013), pp. 593-602 | Article

[23] C.-K. Chen; H.-T. Yau Bifurcation in a flexible rotor supported by short journal bearings with nonlinear suspension, J. Vib. Control, Volume 7 (2001), pp. 653-673 | Article | Zbl 1006.74520

[24] H. Ma; H. Li; H. Niu; R. Song; B. Wen Nonlinear dynamic analysis of a rotor-bearing-seal system under two loading conditions, J. Sound Vib., Volume 332 (2013), pp. 6128-6154 | Article

[25] H. Ma; X. Li; H. Zhao; H. Niu; B. Wen Effects of eccentric phase difference between two discs on oil-film instability in a rotor-bearing system, Mech. Syst. Signal Process., Volume 41 (2013), pp. 526-545 | Article

[26] H. Ma; H. Li; H. Niu; R. Song; B. Wen Numerical and experimental analysis of the first-and second-mode instability in a rotor-bearing system, Arch. Appl. Mech., Volume 84 (2014), pp. 519-541 | Article | Zbl 1293.70062

[27] H. Ma; X. Li; H. Niu; B. Wen Oil-film instability simulation in an overhung rotor system with flexible coupling misalignment, Arch. Appl. Mech., Volume 85 (2015), pp. 893-907 | Article

[28] J. Frene; D. Nicolas; B. Degueurce; D. Berthe; M. Godet Hydrodynamic Lubrication Bearings and Thrust Bearings, Elsevier, Amsterdam, 1997 | Zbl 0904.76002

[29] A.-H. Nayfeh; B. Balachandran Applied Nonlinear Dynamics, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 1995

[30] R. Seydel Nonlinear computation, J. Franklin Inst., Volume 334 (1997), pp. 1015-1047 | Article | MR 1486285 | Zbl 0886.34043

[31] Y.-A. Kuznetsov Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1998 | Zbl 0914.58025

[32] A. Dhooge; W. Govaerts; Y.-A. Kuznetsov Matcont: A Matlab package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., Volume 29 (2003), pp. 141-164 | Article | MR 2000880 | Zbl 1070.65574

[33] Y. Hori; T. Kato Earthquake-induced instability of a rotor supported by oil film bearings, J. Vib. Acoust., Volume 112 (1990), pp. 160-265 | Article