logo CRAS
Comptes Rendus. Mécanique

Synthèse
2D model simulating the hydro-rheological behavior of leather during convective drying
Comptes Rendus. Mécanique, Tome 349 (2021) no. 2, pp. 305-322.

An experimental and numerical study of a two-dimensional spatio-temporal variation of the temperature, moisture content, and mechanical stress during the convective drying process of unsaturated and deformable products (leather) were conducted. The bovine leather sample response under convective drying is described by a mathematical model. The leather sample was modeled by an elastic medium, and the mass, heat, and momentum transfer principles are applied. The numerical results agreed well with the corresponding experimental data. The variation of the internal temperature and moisture content was simulated for different drying conditions. A reduction by 15 °C was noted in the optimum temperature for best product quality when the drying air relative humidity was 20%. The cost to achieve a better quality product was found to be minimized due to the decrease in the optimum temperature. The presented simulation results of the elastic material could be applied to the leather, which will reduce the needed time of exposure for predetermined final water content. The damage of the sample is more likely to occur at the beginning of the drying in the time interval of 300–400 s. According to these simulations, the sample’s face, which is exposed to the drying air, has the highest stress; therefore, the sample’s face is at a high risk of cracking. It is also observed that the risk of damage to the sample corresponding to the maximum level of the stress is higher for the highest drying temperature of 60 °C. The peak of the three thicknesses of leather can be achieved for normal stresses in the interval of 60,000 to 140,000 MPa at around 10,000 s.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmeca.86
Mots clés : Viscoelastic material, Leather, Moisture content, Convective drying, Kinetics, Simulation, Rheological behavior
@article{CRMECA_2021__349_2_305_0,
     author = {Naima Benmakhlouf and Soufien Azzouz and Lamine Hassini and Afif El Cafsi},
     title = {2D model simulating the hydro-rheological behavior of leather during convective drying},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {305--322},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {2},
     year = {2021},
     doi = {10.5802/crmeca.86},
     language = {en},
}
Naima Benmakhlouf; Soufien Azzouz; Lamine Hassini; Afif El Cafsi. 2D model simulating the hydro-rheological behavior of leather during convective drying. Comptes Rendus. Mécanique, Tome 349 (2021) no. 2, pp. 305-322. doi : 10.5802/crmeca.86. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.86/

[1] S. J. Kowalski; K. Rajewska; A. Rybicki Mechanical effects in saturated capillary-porous materials during convective and microwave drying, Dry. Technol., Volume 22 (2004) no. 10, pp. 2291-2308 | Article

[2] R. A. Lemus-Mondaca; C. E. Zambra; A. Vega-Gálvez; N. O. Moraga Coupled 3D heat and mass transfer model for numerical analysis of drying process in papaya slices, J. Food Eng., Volume 116 (2013) no. 1, pp. 109-117 | Article

[3] D. Mihoubi; F. Zagrouba; J. Vaxelaire; A. Bellagi; M. Roques Transfer phenomena during the drying of a shrinkable product: Modeling and simulation, Dry. Technol., Volume 22 (2004) no. 1–2, pp. 91-109 | Article

[4] G. K. Vagenas; D. Marinos-Kouris; G. D. Saravacos An analysis of mass transfer in air-drying of food, Dry. Technol., Volume 19 (1990) no. 2, pp. 323-342 | Article

[5] C. T. Kiranoudis; Z. B. Maroulis; D. Marinos-Kouris Heat and mass transfer model building in drying with multi response data, Int. J. Heat Mass Transfer, Volume 38 (1995) no. 3, pp. 463-480 | Article

[6] N. Wang; J. G. Brennan A mathematical model of simultaneous heat and moisture transfer during drying of potato, J. Food Eng., Volume 24 (1996), pp. 47-60 | Article

[7] A. J. Ketelaars Drying deformable media (1992) (Ph. D. Thesis)

[8] M. N. A. Hawlader; J. C. Ho; Q. Zang A mathematical model for drying of shrinkable materials, Dry. Technol., Volume 17 (1999) no. 1–2, pp. 27-47 | Article

[9] P. Perré; B. K. May A numerical drying model that accounts for the coupling between transfers and solid mechanics. Case of highly deformable products, Dry. Technol., Volume 19 (2001) no. 8, pp. 1629-1643 | Article

[10] H. Yang; N. Sakai; M. Watanable Drying model with non-isotropic shrinkage deformation undergoing simultaneous heat and mass transfer, Dry. Technol., Volume 19 (2001) no. 7, pp. 1441-1460 | Article

[11] B. K. May; P. Perré The importance of considering exchange surface area reduction to exhibit a constant drying flux period in food stuffs, J. Food Eng., Volume 54 (2005), pp. 271-282 | Article

[12] W. P. Silva; J. W. Precker; D. D. P. S. Silva; C. D. P. S. Silva; A. G. Barbosa de Lima Numerical simulation of diffusive processes in solids of revolution via the finite volume method and generalized coordinates, Int. J. Heat Mass Transfer, Volume 52 (2009), pp. 4976-4985 | Article | Zbl 1176.80055

[13] S. Chemkhi; F. Zagrouba; A. Bellagi Mathematical model for drying of highly shrinkable media, Dry. Technol., Volume 22 (2004) no. 5, pp. 1023-1039 | Article

[14] D. Mihoubi; A. Bellagi Stress generated during drying of saturated porous media, Transp. Porous Media, Volume 80 (2009) no. 3, pp. 519-536 | Article

[15] D. Mihoubi; A. Bellagi Two-dimensional heat and mass transfer during drying of deformable media, Appl. Math. Model., Volume 32 (2008) no. 3, pp. 303-314 | Article | Zbl 1140.80004

[16] F. P. Incropera; D. P. DeWitt Fundamentals of Heat and Mass Transfer, John Wiley & Sons Inc, New York, 2002 (698 p)

[17] A. A. J. Ketelaars Drying deformable: media kinetics, shrinkage and stresses, Dry. Technol., Volume 12 (1994) no. 4, pp. 983-987 | Article

[18] C. Moyne; N. Kechaou; P. J. Do AmralSobral; M. Roques; A. Cairault; H. Bizot Mechanism of water transport in drying of gels, Int. Chem. Eng., Volume 34 (1994) no. 3, pp. 360-369

[19] B. A. Manel; D. Mihoubi; S. Jalila; B. Ahmed Strain stress formation during stationary and intermittent drying of deformable media, Dry. Technol., Volume 32 (2014) no. 10, pp. 1245-1255 | Article

[20] B. A. Manel; S. Jalila; M. Daoued; B. Ahmed Multiphase thermo-hydro-mechanical model for concrete under drying at high temperatures, Dry. Technol., Volume 33 (2015) no. 2, pp. 143-152 | Article

[21] G. Johann; M. De Menezes; N. Curvelo Pereira; E. A. da Silva Comparing models to Neumann and Dirichlet conditions in grape seed drying, Appl. Therm. Eng., Volume 93 (2016), pp. 865-871 | Article

[22] C.-K. Liu; C. P. Latona; J. Lee Drying leather with vacuum and toggling sequentiaLLy, J. Am. Leather Chem. Assoc., Volume 106 (2011), pp. 76-82

[23] J. Zhang; C. Zhang; J. Wu; W. Chen Advantages of utilizing microwave in soft leather drying, Leather Footwear J., Volume 17 (2017), pp. 81-86 | Article

[24] N. Proietti; V. Di Tullio; C. Carsote; E. Badea C solid-state NMR complemented by ATR-FTIR and micro-DSC to study modern collagen-based material and historical leather, Magn. Reson. Chem., Volume 58 (2020) no. 9, pp. 840-859

[25] A. Ershad-Langroudia; A. Mirmontahaia; R. Vahidzadeh Viscoelastic behavior of treated historical leather with nanocomposite, Proceedings of the 4th International Conference on Nanostructures (ICNS4), Kish Island, Islamic Republic of Iran (March 12–14, 2012) J. Am. Leather Chem. Assoc. 108 (2013), no. 12

[26] S. Kabeer; G. Attenburrow; P. Picton; M. Wilson Development of an image analysis technique for measurement of Poisson’s ratio for viscoelastic materials: application to leather, J. Mater. Sci., Volume 48 (2013), pp. 744-749 | Article

[27] N. Benmakhlouf; S. Azzouz; H. Khedhira; et al. Moisture sorption isotherms of leather, J. Soc. Leather Technol. Chem., Volume 100 (2016) no. 2, pp. 77-83

[28] N. Benmakhlouf; S. Azzouz; J. M. Cabrera; et al. Controlling mechanisms of moisture diffusion in convective drying of leather, J. Heat Mass Transfer, Volume 53 (2017), pp. 1237-1245 | Article

[29] R. Younsi Simulation numerique du transfertde chaleur et de masse en milieuxfluides et poreux (2007) (Ph. D. Thesis)

[30] Z. Li; D. Paudecerf; J. Yang Mechanical behaviour of natural cowleather in tension, Acta Mech. Solid Sin., Volume 22 (2009) no. 1, pp. 37-44 | Article

[31] S. Chemkhi; F. Zagrouba; A. Bellagi Mathematical model for drying of highly shrinkage media, Dry. Technol., Volume 22 (2004) no. 5, pp. 1023-1039 | Article

[32] J. Monzd-Cabrera; A. Diaz-MorcilloJos; M. Catalfi-Civeraet; E. de los Reyes Heat flux and heat generation characterisation in a wet-laminar body in microwave-assisted drying: an application to microwave drying of leather, Int. Comm. Heat Mass Transfer, Volume 27 (2000) no. 8, pp. 1101-1110 | Article

[33] A. K. Haghi A mathematical model of the drying process, Acta Polytech. J., Volume 41 (2001) no. 3, pp. 20-23

[34] A. K. Haghi Simultaneous moisture and heat transfer in porous systems, J. Comput. Appl. Mech., Volume 2 (2001), pp. 195-204 | Zbl 1002.80008

[35] A. K. Haghi Mechanism of heat and mass transfer in moist porous materials, J. Teknol., Volume 36 (2002), pp. 1-14

[36] A. K. Haghi Factors effecting water-vapor transport through fibers, Theor. Appl. Mech., Volume 30 (2003) no. 4, pp. 277-309 | Article | Zbl 1088.76069

[37] S. Whitaker Simultaneous heat mass and momentum transfer in porous media a theory of drying, Adv. Heat Transfer, Volume 13 (1977), pp. 119-203 | Article

[38] S. Sandoval-Torres; J. Rodríguez-Ramírez; L. L. Méndez-Lagunas Modeling plain vacuum drying by considering a dynamic capillary pressure, Chem. Biochem. Eng., Volume 25 (2011) no. 3, pp. 327-334

[39] W. Jomaa Séchage de matériaux fortement déformables : Pprise en compte de la vitesse de retrait (1991) (Ph. D. Thesis)

[40] S. Gustavo Modélisation du séchage d’un milieu poreux saturé déformable : Prise en compte de la pression du Liquide (2006) (Ph. D. Thesis)

[41] B. Collignon Séchage des bétons réfractaires : expérimentation, modélisation et influence d’un ajout de fibres polymère (2009) (Ph. D. Thesis)

[42] F. D. Incropera; D. P. Dewitt Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 1996

[43] G. Almeida; J. P. Lancha; F. Pierre; J. Casalinho; P. Perré Physical behavior of highly deformable products during convective drying assessed by a new experimental device, Dry. Technol., Volume 35 (2017) no. 8, pp. 906-917 | Article

[44] B. A. Manel; D. Mihoubi; S. Jalila; B. Ahmed Strain–stress formation during stationary and intermittent drying of deformable media, Dry. Technol., Volume 32 (2014) no. 10, pp. 1245-1255 | Article

[45] B. A. Manel; S. Jalila; M. Daoued; B. Ahmed Multiphase thermo-hydro-mechanical model for concrete under drying at high temperatures, Dry. Technol., Volume 33 (2015) no. 2, pp. 143-152 | Article

[46] F. Benboudjema; F. Meftah; J.-M. Torrenti Interaction between drying, shrinkage, creepand cracking phenomena in concrete, Eng. Struct., Volume 27 (2005) no. 2, pp. 239-250 | Article