In this paper we obtain an estimate for the increased integrability of the gradient of the solution to the Zaremba problem for divergent elliptic operator in a bounded domain with nontrivial capacity of the Dirichlet boundary conditions.
Dans cet article, nous obtenons une estimation de l’intégrabilité accrue du gradient de la solution du problème de Zaremba pour un opérateur elliptique divergent dans un domaine borné avec une capacité non triviale des conditions aux limites de Dirichlet.
@article{CRMECA_2021__349_2_299_0, author = {Yurij A. Alkhutov and Gregory A. Chechkin}, title = {The {Meyer{\textquoteright}s} estimate of solutions to {Zaremba} problem for second-order elliptic equations in divergent form}, journal = {Comptes Rendus. M\'ecanique}, pages = {299--304}, publisher = {Acad\'emie des sciences, Paris}, volume = {349}, number = {2}, year = {2021}, doi = {10.5802/crmeca.87}, language = {en}, }
TY - JOUR AU - Yurij A. Alkhutov AU - Gregory A. Chechkin TI - The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form JO - Comptes Rendus. Mécanique PY - 2021 SP - 299 EP - 304 VL - 349 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crmeca.87 LA - en ID - CRMECA_2021__349_2_299_0 ER -
%0 Journal Article %A Yurij A. Alkhutov %A Gregory A. Chechkin %T The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form %J Comptes Rendus. Mécanique %D 2021 %P 299-304 %V 349 %N 2 %I Académie des sciences, Paris %R 10.5802/crmeca.87 %G en %F CRMECA_2021__349_2_299_0
Yurij A. Alkhutov; Gregory A. Chechkin. The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form. Comptes Rendus. Mécanique, Volume 349 (2021) no. 2, pp. 299-304. doi : 10.5802/crmeca.87. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.87/
[1] On a mixed problem for Laplace’s equation, Uspehi Matem. Nauk (N.S.), Volume 1 (1946) no. 3–4(13–14), pp. 125-146 (Russian). MR0025032 | MR | Zbl
[2] Sul problema misto per le equazioni lineari alle derivate parziali del secondo ordine di tipo ellittico, Rev. Roumaine Math. Pures Appl., Volume 9 (1964), pp. 3-9 (Italian) | MR | Zbl
[3] Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb. N.S., Volume 43 (1957) no. 85, pp. 451-503 (Russian). MR0106324 | MR
[4] An -estimate for the gradient of solutions of second order elliptic deivergence equations, Ann. Scuola Norm.-Sci., Volume 17 (1963) no. 3, pp. 189-206 (3-e série) | Numdam | MR
[5] Parabolic equations, Contributions to the Theory of Partial Differential Equations (Ann. Math. Studies), Volume 33, Princeton University Press, Princeton, 1954, pp. 167-190 | Zbl
[6] Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Berlin–New York, 2011
[7] On the continuity at a boundary point of solutions of quasilinear elliptic equations, Vestnik Liningrad. Univ. Mat. Mekh. Astronom., Volume 13 (1970), pp. 42-55 (Russian). MR 0274948 (43:706)
[8] The L-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. Vietnamica, Volume 130 (1973), pp. 265-277 | DOI | MR | Zbl
[9] Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math., Volume 311/312 (1979), pp. 145-169 | MR | Zbl
[10] Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Translations of Math. Monographs, 139, AMS, Providence, 1994 | MR | Zbl
Cited by Sources:
On the Eringen model for nematic liquid crystals
Gregory A. Chechkin; Tudor S. Ratiu; Maxim S. Romanov
C. R. Méca (2021)