logo CRAS
Comptes Rendus. Mécanique

Note
The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form
[L’estimation de Meyer pour les solutions au problème de Zaremba pour les équations elliptiques du second ordre sous forme divergente]
Comptes Rendus. Mécanique, Tome 349 (2021) no. 2, pp. 299-304.

Dans cet article, nous obtenons une estimation de l’intégrabilité accrue du gradient de la solution du problème de Zaremba pour un opérateur elliptique divergent dans un domaine borné avec une capacité non triviale des conditions aux limites de Dirichlet.

In this paper we obtain an estimate for the increased integrability of the gradient of the solution to the Zaremba problem for divergent elliptic operator in a bounded domain with nontrivial capacity of the Dirichlet boundary conditions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmeca.87
Mots clés : Estimations de Meyers, Problème mixte, Théorèmes d’intégration, Capacité, Type de conditions aux limites à alternance rapide
@article{CRMECA_2021__349_2_299_0,
     author = {Yurij A. Alkhutov and Gregory A. Chechkin},
     title = {The {Meyer{\textquoteright}s} estimate of solutions to {Zaremba} problem for second-order elliptic equations in divergent form},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {299--304},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {349},
     number = {2},
     year = {2021},
     doi = {10.5802/crmeca.87},
     language = {en},
}
Yurij A. Alkhutov; Gregory A. Chechkin. The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form. Comptes Rendus. Mécanique, Tome 349 (2021) no. 2, pp. 299-304. doi : 10.5802/crmeca.87. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.87/

[1] S. Zaremba On a mixed problem for Laplace’s equation, Uspehi Matem. Nauk (N.S.), Volume 1 (1946) no. 3–4(13–14), pp. 125-146 (Russian). MR0025032 | MR 25032 | Zbl 0061.23010

[2] G. Fichera Sul problema misto per le equazioni lineari alle derivate parziali del secondo ordine di tipo ellittico, Rev. Roumaine Math. Pures Appl., Volume 9 (1964), pp. 3-9 (Italian) | MR 188640 | Zbl 0168.36602

[3] B. V. Bojarskii Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients, Mat. Sb. N.S., Volume 43 (1957) no. 85, pp. 451-503 (Russian). MR0106324 | MR 106324

[4] N. G. Meyers An L p -estimate for the gradient of solutions of second order elliptic deivergence equations, Ann. Scuola Norm.-Sci., Volume 17 (1963) no. 3, pp. 189-206 (3-e série) | MR 159110

[5] P. D. Lax; A. Milgram Parabolic equations, Contributions to the Theory of Partial Differential Equations (Ann. Math. Studies), Volume 33, Princeton University Press, Princeton, 1954, pp. 167-190 | Zbl 0058.08703

[6] V. Maz’ya Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Berlin–New York, 2011

[7] V. G. Maz’ia On the continuity at a boundary point of solutions of quasilinear elliptic equations, Vestnik Liningrad. Univ. Mat. Mekh. Astronom., Volume 13 (1970), pp. 42-55 (Russian). MR 0274948 (43:706)

[8] F. W. Gehring The L p -integrability of the partial derivatives of a quasiconformal mapping, Acta Math. Vietnamica, Volume 130 (1973), pp. 265-277 | Article | MR 402038 | Zbl 0258.30022

[9] M. Giaquinta; G. Modica Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math., Volume 311/312 (1979), pp. 145-169 | MR 549962 | Zbl 0409.35015

[10] I. V. Skrypnik Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Translations of Math. Monographs, 139, AMS, Providence, 1994 | MR 1297765 | Zbl 0822.35001