[Une hiérarchie de modèles asymptotiques paraxiaux pour approcher les équations de Vlasov–Maxwell non relativistes]
We introduce a new family of paraxial asymptotic models that approximate the Vlasov–Maxwell equations in non-relativistic cases. This formulation is
On introduit une nouvelle famille de modèles asymptotiques paraxiaux pour approcher le système d’équations de Vlasov–Maxwell dans le cas non relativiste. Cette formulation est précise à un ordre n (que l’on peut choisir) par rapport à un paramètre
Révisé le :
Accepté le :
Publié le :
Mots-clés : Équations de Vlasov–Maxwell, Analyse asymptotique, Modèle paraxial, Modèles réduits, Non relativiste
Franck Assous 1 ; Yevgeni Furman 1

@article{CRMECA_2020__348_12_969_0, author = {Franck Assous and Yevgeni Furman}, title = {A hierarchy of reduced models to approximate {Vlasov{\textendash}Maxwell} equations for slow time variations}, journal = {Comptes Rendus. M\'ecanique}, pages = {969--981}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {12}, year = {2020}, doi = {10.5802/crmeca.50}, language = {en}, }
TY - JOUR AU - Franck Assous AU - Yevgeni Furman TI - A hierarchy of reduced models to approximate Vlasov–Maxwell equations for slow time variations JO - Comptes Rendus. Mécanique PY - 2020 SP - 969 EP - 981 VL - 348 IS - 12 PB - Académie des sciences, Paris DO - 10.5802/crmeca.50 LA - en ID - CRMECA_2020__348_12_969_0 ER -
%0 Journal Article %A Franck Assous %A Yevgeni Furman %T A hierarchy of reduced models to approximate Vlasov–Maxwell equations for slow time variations %J Comptes Rendus. Mécanique %D 2020 %P 969-981 %V 348 %N 12 %I Académie des sciences, Paris %R 10.5802/crmeca.50 %G en %F CRMECA_2020__348_12_969_0
Franck Assous; Yevgeni Furman. A hierarchy of reduced models to approximate Vlasov–Maxwell equations for slow time variations. Comptes Rendus. Mécanique, Volume 348 (2020) no. 12, pp. 969-981. doi : 10.5802/crmeca.50. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.50/
[1] U.S. Patent No. 3,271,556, 1966 (Washington, DC: U.S. Patent and Trademark Office)
[2] Manufacturing Techniques for Microfabrication and Nanotechnology, Vol. 2, CRC Press, 2011
[3] An Introduction to the Physics of Intense Charged Particle Beams, Springer, 1984
[4] Principles of gyrotron powered electromagnetic wigglers for free-electron lasers, IEEE J. Quantum Electron., Volume 23 (1987) no. 1, pp. 103-116 | DOI
[5] Free-electron laser simulation techniques, Phys. Rep., Volume 195 (1990) no. 1, pp. 1-21 | DOI
[6] The Physics of Charged Particle Beams, Clarendon Press, Oxford, 1988
[7] Theory and Design of Charged Particle Beams, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 | DOI
[8] On the kinetic theory of an assembly of particles with collective interaction, Russ. Phys. J., Volume 9 (1945), pp. 25-40 | MR | Zbl
[9] Plasmas Physics via Computer Simulation, McGraw-Hill, New York, 1985
[10] Mathematical Foundations of Computational Electromagnetism, Appl. Math. Sci., AMS, 198, Springer, 2018 | MR | Zbl
[11] On a finite element method for solving the three dimensional Maxwell equations, J. Comput. Phys., Volume 109 (1993) no. 2, pp. 222-237 | DOI | MR | Zbl
[12] A particle-tracking method for 3D electromagnetic PIC codes on unstructured meshes, Comput. Phys. Commun., Volume 72 (1992), pp. 105-114 | DOI
[13] On the paraxial approximation of the stationary Vlasov–Maxwell, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 4, pp. 513-562 | DOI | MR | Zbl
[14] Paraxial approximation of ultrarelativistic intense beams, Numer. Math., Volume 69 (1994) no. 1, pp. 33-60 | DOI | MR | Zbl
[15] Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, Math. Models Methods Appl. Sci., Volume 16 (2006) no. 5, pp. 763-791 | DOI | MR | Zbl
[16] The ARCTIC charged particle beam propagation code, J. Comput. Phys., Volume 128 (1996) no. 2, pp. 489-497 | DOI | Zbl
[17] A hierarchy of approximate models for the Maxwell equations, Numer. Math., Volume 73 (1996) no. 3, pp. 329-372 | DOI | MR
[18] Aspects of three field approximations: Darwin, frozen, EMPULSE, 1985 (No. UCID-20453. Lawrence Livermore National Lab., CA, USA)
[19] ELBA a three dimensional particle simulation code for high current beams, 1991 (Published in Proc. of the 14th Inter. Conf. Numer. Simul. Plasmas, Annapolis)
[20] Paraxial approximation of the Vlasov–Maxwell system: laminar beams, Math. Models Methods Appl. Sci., Volume 4 (1994) no. 02, pp. 203-221 | DOI | MR | Zbl
[21] A new paraxial asymptotic model for the relativistic Vlasov–Maxwell equations, C. R. Mecan. Acad. Sci., Volume 340 (2012), pp. 706-714
[22] Numerical paraxial approximation for highly relativistic beams, Comput. Phys. Commun., Volume 180 (2009) no. 7, pp. 1086-1097 | DOI | MR
[23] Data mining techniques for scientific computing: application to asymptotic paraxial approximations to model ultra relativistic particles, J. Comput. Phys., Volume 230 (2011), pp. 4811-4827 | DOI
[24] Characteristic quantities and dimensional analysis, Scientific Modeling and Simulations (S. Yip; T. D. de la Rubia, eds.) (Lecture Notes in Computational Science and Engineering), Volume 68, Springer, 2008, pp. 21-39 | DOI
[25] Dimensional Analysis, Gordon and Breach, New York, 1987
[26] A paraxial asymptotic model for the coupled Vlasov–Maxwell problem in electromagnetics, J. Comput. Appl. Math., Volume 270 (2014), pp. 369-385 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique