[Un nouveau modèle paraxial asymptotique pour approcher le système dʼéquations de Vlasov–Maxwell]
On propose un nouveau modèle paraxial asymptotique pour approcher le système dʼéquations de Vlasov–Maxwell. Cette formulation est précise à lʼordre quatre par rapport à un paramètre η désignant le quotient de la vitesse transverse caractéristique du faisceau par rapport à celle de la lumière. Lʼintéret de ce modèle est quʼil est plus simple que le système complet des équations de Vlasov–Maxwell, tout en étant une approximation suffisamment précise. Ce nouveau modèle devrait conduire à une méthode numérique fiable, rapide et facile à implementer.
We introduce a new paraxial asymptotic model to approximate the Vlasov–Maxwell equations. This formulation is fourth order accurate in a parameter η which denotes the ratio between the transverse characteristic velocity of the beam and the speed of light. The model is interesting because it is simpler than the complete Vlasov–Maxwell equations, and is an accurate approximation of them. This model should give an accurate, fast and easy to implement numerical method of solution.
Accepté le :
Publié le :
Mot clés : Mécanique des fluides numérique, Équations de Vlasov–Maxwell, Analyse asymptotique, Modèle paraxial
Franck Assous 1 ; J. Chaskalovic 2
@article{CRMECA_2012__340_10_706_0, author = {Franck Assous and J. Chaskalovic}, title = {A new paraxial asymptotic model for the relativistic {Vlasov{\textendash}Maxwell} equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {706--714}, publisher = {Elsevier}, volume = {340}, number = {10}, year = {2012}, doi = {10.1016/j.crme.2012.09.002}, language = {en}, }
Franck Assous; J. Chaskalovic. A new paraxial asymptotic model for the relativistic Vlasov–Maxwell equations. Comptes Rendus. Mécanique, Volume 340 (2012) no. 10, pp. 706-714. doi : 10.1016/j.crme.2012.09.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.09.002/
[1] The Physics of Charged Particle Beams, Clarendon Press, Oxford, 1988
[2] Plasmas Physics via Computer Simulation, McGraw–Hill, New York, 1985
[3] A particle-tracking method for 3D electromagnetic PIC codes on unstructured meshes, Comput. Phys. Comm., Volume 72 (1992), pp. 105-114
[4] On a finite element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., Volume 109 (1993) no. 2, pp. 222-237
[5] The ARCTIC charged particle beam propagation code, J. Comput. Phys., Volume 128 (1996) no. 2, pp. 489-497
[6] On the paraxial approximation of the stationary Vlasov–Maxwell, Math. Models Methods Appl. Sci., Volume 3 (1993) no. 4, pp. 513-562
[7] A hierarchy of approximate models for the Maxwell equations, Numer. Math., Volume 73 (1996) no. 3, pp. 329-372
[8] Paraxial approximation of ultrarelativistic intense beams, Numer. Math., Volume 69 (1994) no. 1, pp. 33-60
[9] A PIC method for solving a paraxial model of highly relativistic beams, J. Comput. Appl. Math., Volume 227 (2009) no. 1, pp. 136-146
[10] F. Assous, J. Chaskalovic, A paraxial approach for electromagnetic PIC codes in highly relativistic beams, in preparation.
[11] Data mining techniques for scientific computing: Application to asymptotic paraxial approximations to model ultra relativistic particles, J. Comput. Phys., Volume 230 (2011), pp. 4811-4827
Cité par Sources :
Commentaires - Politique