[Couplage multipas d’ordre élevé : convergence, stabilité et application aux EDPs]
Designing coupling schemes for specialized advanced mono-physics solvers in order to conduct accurate and efficient multiphysics simulations is a key issue that has recently received a lot of attention. A novel high-order adaptive multistep coupling strategy has shown potential to improve the efficiency and accuracy of such simulations, but requires further analysis. The purpose of the present contribution is to conduct the numerical analysis of convergence of the explicit and implicit variants of the method and to provide a first analysis of its absolute stability. A simplified coupled problem is constructed to assess the stability of the method along the lines of the Dahlquist’s test equation for ODEs. We propose a connection with the stability analysis of other methods such as splitting and ImEx schemes. A stability analysis on a representative conjugate heat transfer case is also presented. This work constitutes a first building block to an a priori analysis of the stability of coupled PDEs.
Concevoir des schémas de couplage de solveurs mono-physiques spécialisés pour mener des simulations multi-physiques précises et efficaces est un problème clé qui a été l’objet de beaucoup de travaux récemment. Un nouveau schéma de couplage multipas d’ordre élevé et à pas de temps adaptatif a montré un potentiel certain pour l’amélioration de l’efficacité et la précision de telles simulations, mais requiert toutefois une analyse plus approfondie. L’objectif de cette contribution est de mener une analyse numérique de la convergence des variantes explicite et implicite de cette méthode et d’introduire une première analyse de sa stabilité absolue. Un problème de couplage simplifié est construit pour évaluer la stabilité de la méthode, à l’instar de l’équation test de Dahlquist pour l’analyse des équations différentielles ordinaires. Nous comparons aussi la stabilité d’autres méthodes, comme le splitting d’opérateurs et des schémas ImEx. Une analyse de stabilité sur un cas test représentatif de transfert de chaleur conjugué est aussi présentée.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Simulation multi-physique, ordre élevé, couplage multipas, stabilité, transfert de chaleur conjugué
Antoine E. Simon 1, 2 ; Laurent François 1 ; Marc Massot 3
CC-BY 4.0
@article{CRMECA_2025__353_G1_1159_0,
author = {Antoine E. Simon and Laurent Fran\c{c}ois and Marc Massot},
title = {High-order multistep coupling: convergence, stability and {PDE} application},
journal = {Comptes Rendus. M\'ecanique},
pages = {1159--1184},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.333},
language = {en},
}
TY - JOUR AU - Antoine E. Simon AU - Laurent François AU - Marc Massot TI - High-order multistep coupling: convergence, stability and PDE application JO - Comptes Rendus. Mécanique PY - 2025 SP - 1159 EP - 1184 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.333 LA - en ID - CRMECA_2025__353_G1_1159_0 ER -
Antoine E. Simon; Laurent François; Marc Massot. High-order multistep coupling: convergence, stability and PDE application. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1159-1184. doi: 10.5802/crmeca.333
[1] Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Comput. Methods Appl. Mech. Eng., Volume 182 (2000) no. 3, pp. 499-515 | DOI
[2] Numerical model of restrikes in gliding arc discharges, Plasma Sources Sci. Technol., Volume 33 (2024) no. 1, 015010
[3] A high order time-accurate loosely-coupled solution algorithm for unsteady conjugate heat transfer problems, Comput. Methods Appl. Mech. Eng., Volume 264 (2013), pp. 205-217 | DOI
[4] Modeling of conjugate heat transfer in a kerosene/air spray flame used for aeronautical fire resistance tests, Flow Turbul. Combust., Volume 101 (2018), pp. 579-602 | DOI
[5] Accurate simulation of the noise generated by a hot supersonic jet including turbulence tripping and nonlinear acoustic propagation, Phys. Fluids, Volume 31 (2019), 016105, 31 pages | DOI
[6] CEDRE software, AerospaceLab J. (2011) no. 2, pp. 1-10
[7] onera/cwipi: Library for coupling parallel scientific codes via MPI communications to perform multi-physics simulations https://github.com/onera/cwipi (Accessed 2025-10-29)
[8] Large-eddy simulation of solid/fluid heat and mass transfer applied to the thermal degradation of composite material, Proceedings of the 14th Direct and Large Eddy Simulation (DLES) Workshop, ERCOFTAC (2024)
[9] Multiphysics simulations: challenges and opportunities, Int. J. High Perform. Comput. Appl., Volume 27 (2013) no. 1, pp. 4-83 | DOI
[10] Additive Runge–Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., Volume 44 (2003) no. 1, pp. 139-181 | DOI
[11] Multirate Partitioned Runge–Kutta Methods, BIT Numer. Math., Volume 41 (2001) no. 3, pp. 504-514 | DOI
[12] Automatic multirate methods for ordinary differential equations, Information processing 80 (Simon H. Lavington, ed.) (IFIP Congress Series), North-Holland, 1980 no. 8, pp. 717-722
[13] Multirate linear multistep methods, BIT, Volume 24 (1984) no. 4, pp. 484-502 | DOI
[14] Multirate partitioned Runge–Kutta methods for coupled Navier–Stokes equations, Comput. Fluids, Volume 264 (2023), 105964 | DOI | MR
[15] Multirate infinitesimal step methods for atmospheric flow simulation, BIT Numer. Math., Volume 49 (2009), pp. 449-473 | DOI
[16] Performance of explicit and IMEX MRI multirate methods on complex reactive flow problems within modern parallel adaptive structured grid frameworks, Int. J. High Perform. Comput. Appl., Volume 38 (2024) no. 4, pp. 263-281 | DOI
[17] Quasi-Newton waveform iteration for partitioned surface-coupled multiphysics applications, Int. J. Numer. Methods Eng., Volume 122 (2021) no. 19, pp. 5236-5257 | DOI
[18] Multistep interface coupling for high-order adaptive black-box multiphysics simulations, X International Conference on Computational Methods for Coupled Problems in Science and Engineering (M. Papadrakakis; B. Schrefler; E. Oñate, eds.), 2023 | DOI
[19] Multiphysics modelling and simulation of solid rocket motor ignition, Ph. D. Thesis, Institut Polytechnique de Paris (France) (2022)
[20] High-order adaptive multi-domain time integration scheme for microscale lithium-ion batteries simulations, SMAI J. Comput. Math., Volume 11 (2025), pp. 369-404 | DOI | MR
[21] Two methods of simulator coupling, Math. Comput. Model. Dyn. Syst., Volume 6 (2000) no. 2, pp. 93-113 | DOI
[22] Zur effizienten Kopplung von Simulationsprogrammen, Ph. D. Thesis, Universität Kassel (Germany) (2012)
[23] Domain decomposition methods — Algorithms and theory, Springer Series in Computational Mathematics, Springer, 2004 no. 34 | DOI | MR
[24] Landmarks in the history of iterative methods https://www.unige.ch/...
[25] Solving ordinary differential equations II. Stiff and differential-algebraic problems, Springer Series in Computational Mathematics, 14, Springer, 1996 | MR
[26] On the construction and comparison of difference schemes, SIAM J. Numer. Anal., Volume 5 (1968) no. 3, pp. 506-517 | DOI
[27] Higher-order additive Runge–Kutta schemes for ordinary differential equations, Appl. Numer. Math., Volume 136 (2019), pp. 183-205 | DOI
[28] Partitioned simulation of fluid-structure interaction: coupling black-box solvers with quasi-Newton techniques, Arch. Comput. Methods Eng., Volume 20 (2013) no. 3, pp. 185-238 | DOI
[29] Computer methods for ordinary differential equations and differential-algebraic equations, Society for Industrial and Applied Mathematics, 1998 | DOI
[30] Numerical analysis: a mathematical introduction, Oxford University Press, 2002 | Zbl
[31] Analysis and application of high order implicit Runge–Kutta schemes for unsteady conjugate heat transfer: a strongly-coupled approach, J. Comput. Phys., Volume 272 (2014), pp. 471-486 | DOI
[32] Fast solvers for unsteady thermal fluid structure interaction, Int. J. Numer. Methods Fluids, Volume 79 (2015) no. 1, pp. 16-29 | DOI
[33] Stability of multirate Runge–Kutta schemes, Int. J. Differ. Equ. Appl., Volume 1A (2000) no. 1, pp. 97-105 | Zbl
[34] On the construction and comparison of difference schemes, SIAM J. Numer. Anal., Volume 5 (1968) no. 3, pp. 506-517 | DOI
[35] Adaptive time splitting method for multi-scale evolutionary partial differential equations, Confluentes Math., Volume 3 (2011) no. 3, pp. 413-443 | DOI
[36] A generalized-structure approach to additive Runge–Kutta methods, SIAM J. Numer. Anal., Volume 53 (2015) no. 1, pp. 17-42 | DOI
[37] Stability analysis of numerical interface conditions in fluid-structure thermal analysis, Int. J. Numer. Methods Fluids, Volume 25 (1997) no. 4, pp. 421-436 | DOI
[38] hpc-maths/Rhapsopy: Demonstrator of high-order adaptive code coupling, implicit or explicit https://github.com/hpc-maths/rhapsopy (Accessed 2025-10-29)
Cité par Sources :
Commentaires - Politique
