[ArcNum : un framework numérique à base d’Arcane utilisé pour des simulations d’écoulements en milieu poreux]
This article presents ArcNum, a framework built on the Arcane platform, designed to easily and efficiently develop and maintain the numerical core in finite-volume and finite-element applications. This framework first enables the automatic generation of code needed to instantiate and handle complex physical models from a textual description, through its component called GUMP. ArcNum also offers software components to create, register and evaluate a set of physical laws, requiring only the specification of their inputs, outputs, and corresponding mathematical formulations. Finally, the framework includes a component named Contribution, which combines law evaluation with automatic differentiation to assemble linear systems efficiently. The framework ArcNum has been used to develop an open source Arcane-based porous media flow simulation proxy-app, named ShArc. Single and two-phase porous media flow simulations performed with ShArc are presented to complete the framework description. In order to illustrate the ability to use ArcNum for High Performance Computing, massively parallel simulations conducted with ShArc are finally presented.
Cet article présente ArcNum, un framework conçu au-dessus de la plateforme Arcane pour faciliter le développement et la maintenance du coeur numérique des applications volumes finis ou éléments finis. Cette structure logicielle permet tout d’abord de générer le code nécessaire à l’instanciation et à la manipulation de modèles physiques complexes à partir d’une description textuelle, grâce à son composant appelé GUMP. ArcNum propose également des composants logiciels pour créer, enregistrer et évaluer un ensemble de lois physiques, ne nécessitant que la description de leurs entrées et sorties et la fourniture des formules mathématiques. Enfin, le framework fournit un composant appelé Contribution qui permet de combiner l’évaluation des lois et la différenciation automatique en vue d’assembler un système linéaire. Les composants d’ArcNum ont été utilisés pour construire un démonstrateur open source de simulation d’écoulement en milieu poreux basé sur Arcane, nommé ShArc. Des simulations d’écoulements en milieu poreux monophasique et diphasique, réalisées avec ShArc, sont présentées pour compléter la description du framework. Afin d’illustrer la capacité d’utiliser ArcNum pour le calcul à haute performance, des simulations massivement parallèles réalisées avec ShArc sont finalement présentées.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Composants logiciels de simulation, génération de code, différenciation automatique, Arcane, démonstrateur, simulation d’écoulement polyphasiques en milieu poreux, calcul massivement parallèle
Stéphane de Chaisemartin  1 ; Sylvain Desroziers  1 , 2 ; Guillaume Enchéry  1 ; Raphaël Gayno  1 ; Jean-Marc Gratien  1 ; Gilles Grospellier  3 ; Thomas Guignon  1 ; Pascal Havé  1 , 4 ; Benoît Lelandais  3 ; Alexandre l’Héritier  3 ; Anthony Michel  1 ; Aboul Karim Mohamed El Maarouf  1 ; Valentin Postat  3 ; Xavier Tunc  1 ; Soleiman Yousef  1
CC-BY 4.0
@article{CRMECA_2025__353_G1_1289_0,
author = {St\'ephane de Chaisemartin and Sylvain Desroziers and Guillaume Ench\'ery and Rapha\"el Gayno and Jean-Marc Gratien and Gilles Grospellier and Thomas Guignon and Pascal Hav\'e and Beno{\^\i}t Lelandais and Alexandre l{\textquoteright}H\'eritier and Anthony Michel and Aboul Karim Mohamed El Maarouf and Valentin Postat and Xavier Tunc and Soleiman Yousef},
title = {ArcNum: an {Arcane-based} numerical framework used in porous media flow simulation applications},
journal = {Comptes Rendus. M\'ecanique},
pages = {1289--1314},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.336},
language = {en},
}
TY - JOUR AU - Stéphane de Chaisemartin AU - Sylvain Desroziers AU - Guillaume Enchéry AU - Raphaël Gayno AU - Jean-Marc Gratien AU - Gilles Grospellier AU - Thomas Guignon AU - Pascal Havé AU - Benoît Lelandais AU - Alexandre l’Héritier AU - Anthony Michel AU - Aboul Karim Mohamed El Maarouf AU - Valentin Postat AU - Xavier Tunc AU - Soleiman Yousef TI - ArcNum: an Arcane-based numerical framework used in porous media flow simulation applications JO - Comptes Rendus. Mécanique PY - 2025 SP - 1289 EP - 1314 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.336 LA - en ID - CRMECA_2025__353_G1_1289_0 ER -
%0 Journal Article %A Stéphane de Chaisemartin %A Sylvain Desroziers %A Guillaume Enchéry %A Raphaël Gayno %A Jean-Marc Gratien %A Gilles Grospellier %A Thomas Guignon %A Pascal Havé %A Benoît Lelandais %A Alexandre l’Héritier %A Anthony Michel %A Aboul Karim Mohamed El Maarouf %A Valentin Postat %A Xavier Tunc %A Soleiman Yousef %T ArcNum: an Arcane-based numerical framework used in porous media flow simulation applications %J Comptes Rendus. Mécanique %D 2025 %P 1289-1314 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.336 %G en %F CRMECA_2025__353_G1_1289_0
Stéphane de Chaisemartin; Sylvain Desroziers; Guillaume Enchéry; Raphaël Gayno; Jean-Marc Gratien; Gilles Grospellier; Thomas Guignon; Pascal Havé; Benoît Lelandais; Alexandre l’Héritier; Anthony Michel; Aboul Karim Mohamed El Maarouf; Valentin Postat; Xavier Tunc; Soleiman Yousef. ArcNum: an Arcane-based numerical framework used in porous media flow simulation applications. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1289-1314. doi: 10.5802/crmeca.336
[1] The Arcane Development Framework, POOSC ’09: Proceedings of the 8th Workshop on Parallel/High-Performance Object-Oriented Scientific Computing (Kei Davis, ed.), ACM Press (2009), 4, 11 pages | DOI
[2] The Arcane Framework organization https://github.com/arcaneframework (Accessed 2025-11-03)
[3] Evaluation of the performance portability layer of different linear solver packages with ALIEN, an open generic and extensible linear algebra framework (2022) https://www.scipedia.com/...
[4] The ShArc proxy-app repository https://github.com/arcaneframework/sharc.git (Accessed 2025-11-03)
[5] The ShArc proxy-app installation guide repository https://gitlab.inria.fr/... (Accessed 2025-11-03)
[6] The Arcane platform repository https://github.com/arcaneframework/framework.git (Accessed 2025-11-03)
[7] Survey on Efficient Linear Solvers for Porous Media Flow Models on Recent Hardware Architectures, Oil Gas Sci. Technol., Volume 69 (2014), pp. 753-766 | DOI
[8] SYCL, 2020 Specification https://www.khronos.org/sycl/ (Accessed 2025-11-03)
[9] Kokkos: Enabling manycore performance portability through polymorphic memory access patterns, J. Parallel Distrib. Comput., Volume 74 (2014) no. 12, pp. 3202-3216 | DOI
[10] Arcane benchs and mini apps repository https://github.com/... (Accessed 2025-11-03)
[11] The ArcaneFEM proxy-app repository https://github.com/arcaneframework/arcanefem.git (Accessed 2025-11-03)
[12] Expression Templates, C++ Rep., Volume 7 (1995) no. 5, pp. 26-31
[13] C++ Templates: The Complete Guide, Addison-Wesley Publishing Group, 2002
[14] Coupled groundwater flow and transport: 2. Thermohaline and 3D convection systems, Adv. Water Resources, Volume 21 (1998) no. 5, pp. 401-425 | DOI
[15] The finite volume method, Solution of Equation in (Part 3), Techniques of Scientific Computing (Part 3) (P. G. Ciarlet; J.-L. Lions, eds.) (Handbook of Numerical Analysis), Elsevier, 2000 no. 7, pp. 713-1020 | DOI
[16] Solving nonlinear equations with Newton’s method, Society for Industrial and Applied Mathematics, 2003 | DOI
[17] Reservoir simulation: mathematical techniques in oil recovery, Society for Industrial and Applied Mathematics, 2007 | DOI
[18] General Purpose Compositional Model, SPE J., Volume 25 (1985) no. 4, pp. 543-553 | DOI
[19] Petroleum Reservoir Simulation, Applied Science Publishers, 1979
[20] An Equation of State Compositional Model, SPE J., Volume 20 (1980) no. 5, pp. 363-376 | DOI
[21] A Generalized Compositional Approach for Reservoir Simulation, SPE J., Volume 23 (1983) no. 5, pp. 727-742 | DOI
[22] Adaptive linear solution process for single-phase Darcy flow, Oil Gas Sci. Technol., Volume 75 (2020), 54, 11 pages | DOI
[23] A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media, J. Comput. Phys., Volume 276 (2014), pp. 163-187 | DOI | MR | Zbl
[24] An a posteriori-based, fully adaptive algorithm with adaptive stopping criteria and mesh refinement for thermal multiphase compositional flows in porous media, Comput. Math. Appl., Volume 68 (2014) no. 12, Part B, pp. 2331-2347 | DOI | Zbl
[25] Reservoir Simulator Runtime Enhancement Based on a Posteriori Error Estimation Techniques, Oil Gas Sci. Technol., Volume 71 (2016) no. 5, 59, 11 pages | DOI
[26] Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers, J. Comput. Appl. Math., Volume 366 (2020), 112367, 20 pages | DOI | Zbl | MR
[27] A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows, Comput. Methods Appl. Mech. Eng., Volume 331 (2018), pp. 728-760 | DOI | Zbl
[28] A posteriori-based, local multilevel mesh refinement for the Darcy porous media flow problem, J. Comput. Appl. Math., Volume 454 (2025), 116162, 10 pages | DOI | Zbl
[29] Application of the mixed multiscale finite element method to parallel simulations of two-phase flows in porous media, Oil Gas Sci. Technol., Volume 73 (2018), 38, 14 pages | DOI
[30] Hydraulic properties of porous media (1964) no. 3 (Hydrology Paper)
[31] Supercomputer architecture, TGCC public documentation, version 2025-10-10.1612 https://www-hpc.cea.fr/... (Accessed 2025-11-03)
[32] Grands Challenges Scalaires Joliot-Curie, Adastra 2024, Grands Challenges https://www.genci.fr/grands-challenges#ui-id-1 (Accessed 2025-11-03)
[33] Efficient high-fidelity simulations for the energy transition using ARM and x86 64 architectures (2024) https://www.scipedia.com/...
[34] Sharc: Two phase flow test cases https://github.com/... (Accessed 2025-11-03)
[35] Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes, J. Comput. Phys., Volume 351 (2017), pp. 80-107 | DOI | Zbl
[36] Coupling linear virtual element and non-linear finite volume methods for poroelasticity, Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 395-410 | DOI
Cité par Sources :
Commentaires - Politique
