Comptes Rendus
Article de recherche
Modular and Interdisciplinary Methods for Aeroelastic Simulations (MIMAS)
[Méthodes modulaires et interdisciplinaires pour les simulations aéroélastiques (MIMAS)]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1315-1349

Cet article fait partie du numéro thématique Les environnements de simulation multiphysiques coordonné par Nicolas Bertier et al..

In the context of high aspect ratio wings or blades, aeroelasticity is becoming increasingly crucial for predicting the safety, efficiency, and performance of modern aircraft. This paper describes the development of MIMAS, a computational framework for simulating complex nonlinear aeroelastic phenomena from incompressible to highly transonic flows, in steady or unsteady configurations. On the one hand, MIMAS features advanced mesh deformation and transfer algorithms that have been renewed and optimised to enable faster computations compared to previous implementations within ONERA legacy codes. On the other hand, it offers ready-to-use coupling scenarios to support loose to strong fluid-structure interactions. This environment provides a high-level end-user abstraction layer that allows to couple a wide range of aerodynamic and non-linear structural simulation codes. In addition, the data structure is sufficiently generic to handle both structured and unstructured discretizations. In this paper, we first demonstrate the ability of MIMAS to reproduce existing representative computations such as harmonic forced motion, static coupling and dynamic coupling, without overhead induced by the modular implementation. Second, we present new capabilities of MIMAS, in particular the improved algorithms for mesh deformation and data transfer and its ability to leverage modern HPC architectures.

Dans le contexte des ailes ou des pales à fort allongement, l’aéroélasticité devient de plus en plus cruciale pour prédire la sécurité, l’efficacité et les performances des avions modernes. Cet article décrit le développement de MIMAS, un environnement de calcul permettant de simuler des phénomènes aéroélastiques non linéaires complexes, allant des écoulements incompressibles aux écoulements hautement transsoniques, dans des configurations stables ou instables. D’une part, MIMAS dispose d’algorithmes avancés de déformation et de transfert de maillage qui ont été renouvelés et optimisés pour permettre des calculs plus rapides par rapport aux implémentations précédentes dans les codes hérités de l’ONERA. D’autre part, il offre des scénarios de couplage prêts à l’emploi pour prendre en charge des interactions fluide-structure faibles à fortes. Cet environnement fournit une couche d’abstraction de haut niveau pour l’utilisateur final qui permet de coupler un large éventail de codes de simulation aérodynamique avec des codes structuraux non linéaires. De plus, la structure des données est suffisamment générique pour gérer à la fois les discrétisations structurées et non structurées. Dans cet article, nous démontrons tout d’abord la capacité de MIMAS à reproduire des calculs représentatifs existants tels que le mouvement forcé harmonique, le couplage statique et le couplage dynamique, sans surcharge de temps de calcul induite par l’implémentation modulaire. Ensuite, nous présentons les nouvelles capacités de MIMAS, en particulier les algorithmes améliorés pour la déformation des maillages et le transfert de données, ainsi que sa capacité à tirer parti des architectures HPC modernes.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.337
Keywords: Aeroelasticity, numerical simulations, coupling, mesh deformation
Mots-clés : Aéroélasticité, simulations numériques, couplage, déformation du maillage

Antoine Riols-Fonclare  1   ; Yann Vallat  1   ; Pierre-Emmanuel Des Boscs  1   ; Antoine Placzek  1   ; Alain Dugeai  1   ; Cédric Liauzun  1   ; Christophe Blondeau  1   ; Charly Mollet  1   ; Mikel Balmaseda  2

1 DAAA, ONERA, Institut Polytechnique de Paris, 92320 Châtillon, France
2 DAAA, ONERA, Institut Polytechnique de Paris, 92190 Meudon, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_1315_0,
     author = {Antoine Riols-Fonclare and Yann Vallat and Pierre-Emmanuel Des Boscs and Antoine Placzek and Alain Dugeai and C\'edric Liauzun and Christophe Blondeau and Charly Mollet and Mikel Balmaseda},
     title = {Modular and {Interdisciplinary} {Methods} for {Aeroelastic} {Simulations} {(MIMAS)}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1315--1349},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     doi = {10.5802/crmeca.337},
     language = {en},
}
TY  - JOUR
AU  - Antoine Riols-Fonclare
AU  - Yann Vallat
AU  - Pierre-Emmanuel Des Boscs
AU  - Antoine Placzek
AU  - Alain Dugeai
AU  - Cédric Liauzun
AU  - Christophe Blondeau
AU  - Charly Mollet
AU  - Mikel Balmaseda
TI  - Modular and Interdisciplinary Methods for Aeroelastic Simulations (MIMAS)
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 1315
EP  - 1349
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.337
LA  - en
ID  - CRMECA_2025__353_G1_1315_0
ER  - 
%0 Journal Article
%A Antoine Riols-Fonclare
%A Yann Vallat
%A Pierre-Emmanuel Des Boscs
%A Antoine Placzek
%A Alain Dugeai
%A Cédric Liauzun
%A Christophe Blondeau
%A Charly Mollet
%A Mikel Balmaseda
%T Modular and Interdisciplinary Methods for Aeroelastic Simulations (MIMAS)
%J Comptes Rendus. Mécanique
%D 2025
%P 1315-1349
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.337
%G en
%F CRMECA_2025__353_G1_1315_0
Antoine Riols-Fonclare; Yann Vallat; Pierre-Emmanuel Des Boscs; Antoine Placzek; Alain Dugeai; Cédric Liauzun; Christophe Blondeau; Charly Mollet; Mikel Balmaseda. Modular and Interdisciplinary Methods for Aeroelastic Simulations (MIMAS). Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1315-1349. doi: 10.5802/crmeca.337

[1] Vincent de Gaudemaris; Jean-Sébastien Schotté; Antoine Placzek; Laurent Blanc; Fabrice Thouverez Unsteady aerodynamic modeling of whirl flutter on a bending wing, J. Phys. Conf. Ser., Volume 2647 (2024) no. 11, 112013, 12 pages | DOI

[2] Vincent de Gaudemaris; Jean-Sébastien Schotté; Antoine Placzek; Laurent Blanc; Fabrice Thouverez Influence of aerodynamic modeling on the whirl flutter stability of a propeller under axial and non-axial flow conditions (2024), IFASD-2024-150 https://conf.ifasd2024.nl/... Conference paper: International Forum on Aeroelasticity and Structural Dynamics (IFASD 2024)

[3] Christopher Koch; Benedikt Koert Including Blade Elasticity into Frequency-Domain Propeller Whirl Flutter Analysis, J. Aircraft, Volume 61 (2024) no. 3, pp. 774-784 | DOI

[4] Alasdair C. Gray; Joaquim R. R. A. Martins A Proposed Benchmark Model for Practical Aeroelastic Optimization of Aircraft Wings, AIAA SCITECH 2024 Forum, American Institute of Aeronautics and Astronautics (2024) | DOI

[5] Denis Gueyffier; Sylvie Plot; Matthieu Soismier SoNICS: a new generation CFD software for satisfying industrial users needs (2022) (Conference paper: OTAN/STO/Workshop AVT-366) | HAL

[6] Laurent Cambier; Sébastien Heib; Sylvie Plot The Onera elsA CFD software: input from research and feedback from industry, Mech. Ind., Volume 14 (2013) no. 3, pp. 159-174 | DOI

[7] Stefan Görtz; Tobias Leicht; Vincent Couaillier; Michael Méheut; Pascal Larrieu; Steeve Champagneux CODA: A European Perspective for a Next-Generation CFD, Analysis and Design Platform (2022) (Conference paper: NATO AVT-366 Workshop on Use of Computational Fluid Dynamics for Design and Analysis: Bridging the Gap Between Industry and Developers)

[8] Arathi Gopinath; Antony Jameson Time Spectral Method for Periodic Unsteady Computations over Two- and Three- Dimensional Bodies, 43rd AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics (2005) | DOI

[9] Nathan L. Mundis; Dimitri J. Mavriplis Toward an optimal solver for time-spectral fluid-dynamic and aeroelastic solutions on unstructured meshes, J. Comput. Phys., Volume 345 (2017), pp. 132-161 | DOI

[10] Christophe Blondeau; Cédric Liauzun A modular implementation of the time spectral method for aeroelastic analysis and optimization on structured meshes (2019) Conference paper: International Forum on Aeroelasticity and Structural Dynamics (IFASD 2019) | HAL

[11] Cédric Liauzun; Christophe Blondeau A modular TSM solver for aeroelastic analysis and optimization (2024) https://conf.ifasd2024.nl/... Conference paper: International Forum on Aeroelasticity and Structural Dynamics (IFASD 2024)

[12] G. Chourdakis; K. Davis; B. Rodenberg; M Schulte; F. Simonis; B. Uekermann; G Abrams; H. J. Bungartz; L. Cheung Yau; I. Desai; K. Eder; R. Hertrich; F Lindner; A. Rusch; D. Sashko; D. Schneider; A. Totounferoush; D. Volland; P. Vollmer; O. Z. Koseomur preCICE v2: A sustainable and user-friendly coupling library, Open Res. Eur., Volume 2 (2022) no. 51, pp. 1-47 | DOI

[13] Mehdi Jadoui Solveurs de Krylov robustes pour la résolution partitionnée et monolithique du système adjoint couplé aéro-structure, Ph. D. Thesis, Sorbonne Université (France) (2023) https://theses.hal.science/tel-04336964v1/document

[14] P. Girodroux-Lavigne Progress in steady/unsteady fluid-structure coupling with Navier–Stokes equations, ONERA: Tire a Part, Volume 1 (2005)

[15] Thomas D. Economon; Francisco Palacios; Sean R. Copeland; Trent W. Lukaczyk; Juan J. Alonso SU2: An Open-Source Suite for Multiphysics Simulation and Design, AIAA J., Volume 54 (2016) no. 3, pp. 828-846 | DOI

[16] Ben Hallissy; Carlos E. Cesnik High-fidelity Aeroelastic Analysis of Very Flexible Aircraft, 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, American Institute of Aeronautics and Astronautics (2011) | DOI

[17] Thiago A. Guimarães; Carlos E. Cesnik; Ilya V. Kolmanovsky An Integrated Low-Speed Aeroelastic-Flight-Dynamics Framework for Modeling Supersonic Aircraft, AIAA SCITECH 2022 Forum, American Institute of Aeronautics and Astronautics (2022) | DOI

[18] Alain Dugeai; P. Vuillemin Highly flexible aircraft flight dynamics simulation using CFD (2024) Conference paper: International Forum on Aeroelasticity and Structural Dynamics (IFASD 2024) | HAL

[19] W. Liu; A. Skillen; C. Moulinec ParaSiF_CF: A Partitioned Fluid-Structure Interaction Framework for Exascale (2022) (Technical report) | DOI

[20] Justin S. Gray; John T. Hwang; Joaquim R. R. A. Martins; Kenneth T. Moore; Bret A. Naylor OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization, Struct. Multidiscip. Optim., Volume 59 (2019) no. 4, pp. 1075-1104

[21] Komahan Boopathy; Graeme J. Kennedy Parallel Finite Element Framework for Rotorcraft Multibody Dynamics and Discrete Adjoint Sensitivities, AIAA J., Volume 57 (2019) no. 8, pp. 3159-3172 | DOI

[22] J. R. Levesque The Code Aster: a product for mechanical engineers, Epure, Volume 60 (1998), pp. 7-20

[23] Edward Luke; Eric Collins; Eric Blades A fast mesh deformation method using explicit interpolation, J. Comput. Phys., Volume 231 (2012) no. 2, pp. 586-601 | DOI

[24] Nicolas Barral; Edward Luke; Frédéric Alauzet Two Mesh Deformation Methods Coupled with a Changing-connectivity Moving Mesh Method for CFD Applications, Procedia Eng., Volume 82 (2014), pp. 213-227 | DOI

[25] Ney R. Secco; Gaetan K. W. Kenway; Ping He; Charles Mader; Joaquim R. R. A. Martins Efficient Mesh Generation and Deformation for Aerodynamic Shape Optimization, AIAA J., Volume 59 (2021) no. 4, pp. 1151-1168 | DOI

[26] Pieter Coulier; Eric Darve Efficient mesh deformation based on radial basis function interpolation by means of the inverse fast multipole method, Comput. Methods Appl. Mech. Eng., Volume 308 (2016), pp. 286-309 | DOI

[27] Richard P. Dwight Robust Mesh Deformation using the Linear Elasticity Equations, Computational Fluid Dynamics 2006 (Herman Deconinck; E. Dick, eds.), Springer (2009), pp. 401-406 | DOI

[28] Donald Shepard A two-dimensional interpolation function for irregularly-spaced data, ACM ’68: Proceedings of the 1968 23rd ACM national conference (Richard B. Blue; Arthur M. Rosenberg, eds.), ACM Press (1968), pp. 517-524

[29] P. A. Burrough; R. A. McDonnell; C. D. Lloyd Principles of Geographical Information Systems, Oxford University Press, 2015

[30] William J. Gordon; Charles A. Hall Construction of curvilinear co-ordinate systems and applications to mesh generation, Int. J. Numer. Methods Eng., Volume 7 (1973) no. 4, pp. 461-477 | DOI

[31] L. E. Eriksson Generation of boundary-conforming grids around wing-body configurations using transfinite interpolation, AIAA J., Volume 20 (1982) no. 10, pp. 1313-1320 | DOI

[32] Shuvam Sen; Guillaume De Nayer; Michael Breuer A fast and robust hybrid method for block-structured mesh deformation with emphasis on FSI-LES applications, Int. J. Numer. Methods Eng., Volume 111 (2017) no. 3, pp. 273-300

[33] John Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes, 27th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (1990) | DOI

[34] Alain Dugeai elsA: Ael move3D Mesh Deformation Theoretical/User Guide (2014) no. /ELSA/MU-10004-2014 (Technical report)

[35] Daigo Maruyama; Didier Bailly; Gérald Carrier High-Quality Mesh Deformation Using Quaternions for Orthogonality Preservation, AIAA J., Volume 52 (2014) no. 12, pp. 2712-2729 | DOI

[36] Richard Franke; Greg Nielson Smooth interpolation of large sets of scattered data, Int. J. Numer. Methods Eng., Volume 15 (1980) no. 11, pp. 1691-1704 | DOI

[37] C. Farhat; M. Lesoinne; P. Le Tallec Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. Methods Appl. Mech. Eng., Volume 157 (1998) no. 1, pp. 95-114 | DOI

[38] Jamshid Samareh Discrete Data Transfer Technique for Fluid-Structure Interaction, 18th AIAA Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astronautics (2007) | DOI

[39] A. De Boer Computational fluid-structure interaction: Spatial coupling, coupling shell and mesh deformation, Ph. D. Thesis, Delft University of Technology (The Netherlands) (2008) http://resolver.tudelft.nl/...

[40] T. C. S. Rendall; C. B. Allen Improved radial basis function fluid-structure coupling via efficient localized implementation, Int. J. Numer. Methods Eng., Volume 78 (2009) no. 10, pp. 1188-1208 | DOI

[41] Timothée Achard Techniques de calcul de gradient aéro-structure haute-fidélité pour l’optimisation de voilures flexibles, Ph. D. Thesis, CNAM (France) (2017) https://theses.fr/2017CNAM1140

[42] Jan F. Kiviaho; Graeme J. Kennedy Efficient and Robust Load and Displacement Transfer Scheme Using Weighted Least Squares, AIAA J., Volume 57 (2019) no. 5, pp. 2237-2243 | DOI

[43] G. E. Fasshauer Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences, World Scientific, 2007 | DOI

[44] Natasha Flyer; Gregory A. Barnett; Louis J. Wicker Enhancing finite differences with radial basis functions: Experiments on the Navier–Stokes equations, J. Comput. Phys., Volume 316 (2016), pp. 39-62 | DOI

[45] Patrick R. Amestoy; Alfredo Buttari; Jean-Yves L’Excellent; Theo Mary Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures, ACM Trans. Math. Softw., Volume 45 (2019) no. 1, 2, 26 pages | DOI

[46] Isabelle Ramière; Thomas Helfer Iterative residual-based vector methods to accelerate fixed point iterations, Comput. Math. Appl., Volume 70 (2015) no. 9, pp. 2210-2226 | DOI

[47] Alain Dugeai; Yann Mauffrey; Antoine Placzek; Simon Verley Overview of the Aeroelastic Capabilities of the elsA Solver within the Context of Aeronautical Engines, AerospaceLab J. (2018) no. 14, AL 14-03, 20 pages | DOI

[48] Joseph J. Hollkamp; Robert W. Gordon Reduced-order models for nonlinear response prediction: Implicit condensation and expansion, J. Sound Vib., Volume 318 (2008) no. 4, pp. 1139-1153 | DOI

[49] Théo Flament; Jean-François Deü; Antoine Placzek; Mikel Balmaseda; Duc-Minh Tran Reduced-order model of geometrically nonlinear flexible structures for fluid-structure interaction applications, Int. J. Non-Linear Mech., Volume 158 (2024), 104587 | DOI

[50] Théo Flament; Jean-François Deü; Antoine Placzek; Mikel Balmaseda; Duc-Minh Tran Reduced Order Model of Nonlinear Structures for Turbomachinery Aeroelasticity, J. Eng. Gas Turbines Power, Volume 146 (2023) no. 3, 031005, 9 pages | DOI

[51] Laurent Hascoet; Valérie Pascual The Tapenade Automatic Differentiation tool: principles, model, and specification, ACM Trans. Math. Softw., Volume 39 (2013) no. 3, 20, 43 pages | DOI

[52] G. S. Winckelmans; A. Leonard Contributions to Vortex Particle Methods for the Computation of Three-Dimensional Incompressible Unsteady Flows, J. Comput. Phys., Volume 109 (1993) no. 2, pp. 247-273 | DOI

[53] Johan Valentin; Luis Bernardos; Élie Rivoalen; Grégory Pinon Vortex Particle Velocity Diffusion Method Using Dynamic Turbulence Control Based on Enstrophy (2024) | HAL

[54] E. C. Yates; N. S. Land; J. T. Foughner Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45 sweptback Wing Planform in Air and in Freon-12 in the Langley Transonic Dynamics Tunnel, NASA technical note, National Aeronautics and Space Administration, 1963

[55] Rocco Moretti; Hyeonsoo Yeo; François Richez; Biel Ortun Rotor Loads Prediction on UH-60A Flight Test using Loose Fluid/Structure Coupling (2023), pp. 1-9 (Conference paper: Vertical Flight Society 79th Annual Forum & Technology Display) | HAL | DOI

[56] Mikel Balmaseda; Hyeonsoo Yeo; Buvana Jayaraman; Biel Ortun High-fidelity aerodynamic loads analysis of the double-swept ERATO rotor (2024) Conference paper: 50th European Rotorcraft Forum (ERF 2024)

[57] Mikel Aguirre; Antoine Riols-Fonclare; François Richez Aeroelastic Analysis with Rapid Methods of the Double-swept ERATO Blade with an Homogeneous Structure in Hover Flight (2024) (Conference paper: Vertical Flight Society 80th Annual Forum & Technology Display) | DOI

Cité par Sources :

Commentaires - Politique