[Censure cosmique faible, surfaces piégées et singularités nues pour les équations d’Einstein dans le vide]
La conjecture de censure cosmique faible postule que, de manière générale, toutes les singularités en relativité générale provenant de données initiales régulières asymptotiquement plates devraient avoir un infini nul futur complet. Bien que cette conjecture reste largement ouverte, elle a inspiré de nombreux travaux mathématiques portant sur des sujets tels que la formation de surfaces piégées et la construction de singularités nues. Dans cet article, nous passerons en revue certains de ces travaux et tenterons de mettre en évidence leurs interconnexions. interconnectedness.
The weak cosmic censorship conjecture posits that, generically, all singularities in General Relativity arising from regular asymptotically flat initial data should have a complete future null infinity. While this conjecture remains wide open, it has inspired many mathematical works concerning topics such as trapped surface formation and the construction of naked singularities. In this article we will review some of these works and attempt to emphasize their interconnectedness.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Censure cosmique faible, Surfaces piégées, Singularités nues
Yakov Shlapentokh-Rothman 1, 2

@article{CRMECA_2025__353_G1_379_0, author = {Yakov Shlapentokh-Rothman}, title = {Weak cosmic censorship, trapped surfaces, and naked singularities for the {Einstein} vacuum equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {379--410}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.284}, language = {en}, }
TY - JOUR AU - Yakov Shlapentokh-Rothman TI - Weak cosmic censorship, trapped surfaces, and naked singularities for the Einstein vacuum equations JO - Comptes Rendus. Mécanique PY - 2025 SP - 379 EP - 410 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.284 LA - en ID - CRMECA_2025__353_G1_379_0 ER -
Yakov Shlapentokh-Rothman. Weak cosmic censorship, trapped surfaces, and naked singularities for the Einstein vacuum equations. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 379-410. doi : 10.5802/crmeca.284. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.284/
[1] Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI | Zbl
[2] Global aspects of the Cauchy problem in general relativity, Commun. Math. Phys., Volume 14 (1969), pp. 329-335 | DOI | Zbl
[3] General Relativity, The University of Chicago Press, Chicago, 1984 | DOI
[4] Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsber. K. Preuss. Akad. Wiss., Volume 1 (1916), pp. 189-196 | Zbl
[5] Lectures on black holes and linear waves, Evolution Equations (Clay Mathematics Proceedings), Volume 17, American Mathematical Society, Providence, RI, 2013, pp. 97-205 | Zbl
[6] The C-inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry, J. Differ. Geom., Volume 108 (2018) no. 2, pp. 319-378 | DOI | Zbl
[7] On the proof of the C-inextendibility of the Schwarzschild spacetime, J. Phys. Conf. Ser., Volume 968 (2018), 012012 | DOI
[8] Gravitational collapse and space-time singularities, Phys. Rev. Lett., Volume 14 (1965), pp. 57-59 | DOI | Zbl
[9] The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, Princeton University Press, Princeton, NJ, 1993, x+514 pages
[10] The Evolution Problem in General Relativity, Progress in Mathematical Physics, 25, Birkhäuser Boston Inc., Boston, MA, 2003, xiv+385 pages | DOI
[11] On the global initial value problem and the issue of singularities, Class. Quantum Gravity, Volume 16 (1999), p. A23-A35 | DOI | Zbl
[12] Global stability of Minkowski spacetime with minimal decay, preprint, 2023 | arXiv
[13] Gravitational collapse: the role of general relativity, Riv. Nuovo Cim., Volume 1 (1969), pp. 252-276
[14] Examples of naked singularity formation in the gravitational collapse of a scalar field, Ann. Math. (2), Volume 140 (1994) no. 3, pp. 607-653 | DOI | Zbl
[15] The interior of dynamical vacuum black holes I: the C-stability of the Kerr Cauchy horizon, Ann. Math. (2017) (to appear)
[16] The formation of black holes and singularities in spherically symmetric gravitational collapse, Commun. Pure Appl. Math., Volume 44 (1991) no. 3, pp. 339-373 | DOI | Zbl
[17] Bounded variation solutions of the spherically symmetric Einstein-scalar field equations, Commun. Pure Appl. Math., Volume 46 (1993) no. 8, pp. 1131-1220 | DOI | Zbl
[18] The instability of naked singularities in the gravitational collapse of a scalar field, Ann. Math., Volume 149 (1999), pp. 183-217 | DOI | Zbl
[19] High regularity waves on self-similar naked singularity interiors: decay and the role of blue-shift, preprint, 2024 | arXiv
[20] Spherically symmetric spacetimes with a trapped surface, Class. Quantum Gravity, Volume 22 (2005) no. 11, pp. 2221-2232 | DOI | Zbl
[21] A construction of approximately self-similar naked singularities for the spherically symmetric Einstein-scalar field system, Ann. Henri Poincaré (2024) | DOI
[22] Violation of cosmic censorship in the gravitational collapse of a dust cloud, Commun. Math. Phys., Volume 93 (1984) no. 2, pp. 171-195 | DOI
[23] Naked singularities in the Einstein–Euler system, Ann. PDE, Volume 9 (2023) no. 1, 4 | DOI | Zbl
[24] On the existence of self-similar spherically symmetric wave maps coupled to gravity, Class. Quantum Gravity, Volume 19 (2002) no. 12, pp. 3309-3321 | DOI | Zbl
[25] Universality and scaling in gravitational collapse of a massive scalar field, Phys. Rev. Lett., Volume 70 (1993), pp. 9-12 | DOI
[26] Critical phenomena in gravitational collapse, Living Rev. Relativ., Volume 10 (2007), 5 | DOI | Zbl
[27] A robust proof of the instability of naked singularities of a scalar field in spherical symmetry, Commun. Math. Phys., Volume 363 (2018) no. 2, pp. 561-578 | DOI | Zbl
[28] Instability of spherical naked singularities of a scalar field under gravitational perturbations, J. Differ. Geom., Volume 120 (2022) no. 1, pp. 97-197 | DOI | Zbl
[29] Naked singularity censoring with aniostropic apparent horizon, Ann. Math. (2024) (to appear)
[30] Quasinormal modes and strong cosmic censorship, Phys. Rev. Lett., Volume 120 (2018), 031103 | DOI
[31] Rough initial data and the strength of the blue-shift instability on cosmological black holes with ensuremath> 0, Class. Quantum Gravity, Volume 35 (2018) no. 19, 195010 | DOI | Zbl
[32] Strong cosmic censorship: taking the rough with the smooth, J. High Energy Phys. (2018) no. 10, 1 | DOI | Zbl
[33] The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2009, x+589 pages | DOI
[34] Formation of trapped surfaces in geodesic foliation, preprint, 2024 | arXiv
[35] The formation of black holes in general relativity [after D. Christodoulou], Sémin. Bourbaki, Volume 2011/2012 (2013) no. 352, pp. 243-313 (Exposés 1043–1058, p. Exp. No. 1051, viii) | Zbl
[36] Construction of Cauchy data of vacuum Einstein field equations evolving to black holes, Ann. Math. (2), Volume 181 (2015) no. 2, pp. 699-768 | DOI | Zbl
[37] On the asymptotics for the vacuum Einstein constraint equations, J. Differ. Geom., Volume 73 (2006) no. 2, pp. 185-217 | DOI | Zbl
[38] Event horizon gluing and black hole formation in vacuum: the very slowly rotating case, Adv. Math., Volume 452 (2024), 109816 | DOI | Zbl
[39] On the formation of trapped surfaces, Acta Math., Volume 208 (2012) no. 2, pp. 211-333 | DOI | Zbl
[40] On emerging scarred surfaces for the Einstein vacuum equations, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 3, pp. 1007-1031 | DOI | Zbl
[41] Formation of trapped surfaces in general relativity, PhD thesis, Princeton University, ProQuest LLC, Ann Arbor, MI (2014)
[42] A fully anisotropic mechanism for formation of trapped surfaces in vacuum, Invent. Math., Volume 198 (2014) no. 1, pp. 1-26 | DOI | Zbl
[43] The bounded L curvature conjecture, Invent. Math., Volume 202 (2015) no. 1, pp. 91-216 | DOI | Zbl
[44] Sharp Strichartz estimates for the wave equation on a rough background, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 6, pp. 1279-1309 | DOI | Zbl
[45] Parametrix for wave equations on a rough background III: space–time regularity of the phase, Astérisque (2018) no. 401, p. viii+321 | Zbl
[46] Parametrix for wave equations on a rough background. I: regularity of the phase at initial time. II: construction and control at initial time, Astérisque (2023) no. 443, p. ix+275 | DOI
[47] Parametrix for wave equations on a rough background: IV. Control of the error term, Astérisque (2023) no. 444, p. viii+314 | DOI
[48] Singularities in general relativity, ICM—International Congress of Mathematicians. Vol. 5. Sections 9–11, EMS Press, Berlin, 2023, pp. 4120-4141 (©2023) | DOI | Zbl
[49] Local propagation of impulsive gravitational waves, Commun. Pure Appl. Math., Volume 68 (2015) no. 4, pp. 511-624 | DOI | Zbl
[50] Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations, Camb. J. Math., Volume 5 (2017) no. 4, pp. 435-570 | DOI | Zbl
[51] The geometry of impulsive gravitational waves, General Relativity (Papers in Honour of J. L. Synge), Clarendon Press, Oxford, 1972, pp. 101-115 | Zbl
[52] Scattering of two impulsive gravitational plane waves, Nature, Volume 229 (1971) no. 5281, pp. 185-186 | DOI
[53] High-frequency limits and null dust solutions in general relativity, preprint, 2020 | arXiv
[54] The high-frequency limit in general relativity, J. Math. Phys., Volume 30 (1989) no. 1, pp. 90-96 | DOI | Zbl
[55] High-frequency solutions to the Einstein equations, Class. Quantum Gravity, Volume 41 (2024), 143002 | DOI | Zbl
[56] Trapped surfaces in vacuum arising dynamically from mild incoming radiation, Adv. Theor. Math. Phys., Volume 21 (2017) no. 1, pp. 1-120 | DOI | Zbl
[57] Emergence of apparent horizon in gravitational collapse, Ann. PDE, Volume 6 (2020) no. 2, 10 | DOI | Zbl
[58] A scale-critical trapped surface formation criterion: a new proof via signature for decay rates, Ann. PDE, Volume 8 (2022) no. 1, 3 | DOI | Zbl
[59] Dynamics of apparent horizon and a null comparison principle, Ann. PDE, Volume 10 (2024), 15 | DOI | Zbl
[60] Anisotropic dynamical horizons arising in gravitational collapse, preprint, 2020 | arXiv
[61] Naked singularities for the Einstein vacuum equations: the exterior solution, Ann. Math. (2), Volume 198 (2023) no. 1, pp. 231-391 | DOI | Zbl
[62] Naked singularities for the Einstein vacuum equations: the interior solution, preprint, 2022 | arXiv | Zbl
[63] Singularities in conformally flat spacetimes, Phys. Lett. A, Volume 64 (1977) no. 1, pp. 8-10 | DOI
[64] Conformal invariants, Astérisque (1985), pp. 95-116 Numéro Hors Série The Mathematical Heritage of Élie Cartan (Lyon, 1984) | Zbl
[65] The Ambient Metric, Annals of Mathematics Studies, 178, Princeton University Press, Princeton, NJ, 2012, x+113 pages
[66] The asymptotically self-similar regime for the Einstein vacuum equations, Geom. Funct. Anal., Volume 28 (2018) no. 3, pp. 755-878 | DOI | Zbl
[67] Twisted self-similarity and the Einstein vacuum equations, Commun. Math. Phys., Volume 401 (2023) no. 2, pp. 2269-2325 | DOI | Zbl
[68] Black strings, low viscosity fluids, and violation of cosmic censorship, Phys. Rev. Lett., Volume 105 (2010) no. 10, 101102 | DOI | Zbl
[69] Examples of naked singularity formation in higher-dimensional Einstein-vacuum spacetimes, Ann. Henri Poinc., Volume 19 (2018) no. 2, pp. 619-651 | DOI | Zbl
[70] Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations, Proc. R. Soc. Lond. A, Volume 427 (1990) no. 1872, pp. 221-239 | Zbl
[71] On the local existence for the characteristic initial value problem in general relativity, Int. Math. Res. Not. IMRN (2012) no. 20, pp. 4625-4678 | DOI | Zbl
Cité par Sources :
Commentaires - Politique