We present the literature on Burnett’s conjecture in general relativity, which relate weak limits of vacuum solutions to relativistic kinetic theory. A special care is put on relating these works with early Choquet-Bruhat’s results on high-frequency gravitational waves and geometric optics.
Nous passons en revue la littérature sur la conjecture de Burnett en relativité générale, qui relie les limites faibles des solutions du vide à la théorie cinétique relativiste. Une attention particulière est portée sur le lien entre ces travaux et les premiers résultats de Choquet-Bruhat concernant les ondes gravitationnelles haute fréquence et l’optique géométrique.
Revised:
Accepted:
Published online:
Mots-clés : Équations d’Einstein, Rétroaction, Théorie cinétique relativiste, Compacité compensée, Optique géométrique, Ondes gravitationnelles haute fréquence
Arthur Touati 1

@article{CRMECA_2025__353_G1_455_0, author = {Arthur Touati}, title = {Burnett{\textquoteright}s conjecture in general relativity}, journal = {Comptes Rendus. M\'ecanique}, pages = {455--476}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.288}, language = {en}, }
Arthur Touati. Burnett’s conjecture in general relativity. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 455-476. doi : 10.5802/crmeca.288. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.288/
[1] Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI
[2] General Relativity and the Einstein Equations, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2009
[3] The high-frequency limit in general relativity, J. Math. Phys., Volume 30 (1989) no. 1, pp. 90-96 | DOI | Zbl
[4] Construction de solutions radiatives approchées des équations d’Einstein, Commun. Math. Phys., Volume 12 (1969), pp. 16-35 http://projecteuclid.org/euclid.cmp/1103841306 | DOI
[5] Method of the self-consistent field in general relativity and its application to the gravitational geon, Phys. Rev., Volume 135 (1964), p. B271-B278 | DOI | Zbl
[6] Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics, Phys. Rev., Volume 166 (1968), pp. 1263-1271 | DOI
[7] Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor, Phys. Rev., Volume 166 (1968), pp. 1272-1279 | DOI
[8] The averaged Lagrangian and high-frequency gravitational waves, Commun. Math. Phys., Volume 30 (1973) no. 2, pp. 153-169 | DOI
[9] New framework for analyzing the effects of small scale inhomogeneities in cosmology, Phys. Rev. D, Volume 83 (2011) no. 8, 084020 | DOI
[10] Une Mathématicienne dans Cet étrange Univers : Mémoires, Odile Jacob, Paris, 2016
[11] High-frequency solutions to the Einstein equations, Class. Quantum Gravity, Volume 41 (2024) no. 14, 143002 | DOI | Zbl
[12] Näherungsweise integration der feldgleichungen der gravitation, Sitzungsber. Kgl. Preuss. Akad. Wiss., Volume 1916 (1916), pp. 688-696 | Zbl
[13] Gravitation, W. H. Freeman and Co., San Francisco, CA, 1973
[14] Ondes asymptotiques pour un système d’équations aux dérivées partielles non linéaires, C. R. Acad. Sci. Paris Sér. A, Volume 264 (1967), pp. 625-628 | Zbl
[15] Ondes asymptotiques et approchées pour des systèmes d’équations aux dérivées partielles non linéaires, J. Math. Pures Appl. (9), Volume 48 (1969), pp. 117-158 | Zbl
[16] Ondes asymptotiques et approchées pour un système d’équations aux dérivées partielles non linéaires, C. R. Acad. Sci., Volume 264 (1967), pp. 625-638
[17] Ondes asymptotiques et approchées pour un système d’équations aux dérivées partielles non linéaires, Sémin. Jean Leray, Volume 3 (1969), pp. 1-10 (MR:255964. Zbl:0177.36404) | Zbl
[18] Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1990 | DOI
[19] Approximate radiative solutions of Einstein–Maxwell equations, Relativity and Gravitation (G. Kuper Charles, ed.), Gordon and Breach Science Publishers, Inc, New York, 1971, pp. 81-86 https://www.osti.gov/biblio/4661970
[20] Ondes gravitationnelles à haute fréquence et interaction avec la matière, C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Volume 323 (1996) no. 2, pp. 117-124 | Zbl
[21] High-frequency, self-gravitating, charged scalar fields, Gen. Relativ. Gravit., Volume 8 (1977) no. 8, pp. 561-571 | DOI
[22] High frequency asymptotic solutions of Yang–Mills and associated fields, J. Math. Phys., Volume 24 (1983) no. 2, pp. 377-379 | DOI | Zbl
[23] Ondes à haute fréquence pour la gravitation avec termes de Gauss–Bonnet, C. R. Acad. Sci. Paris Sér. I Math., Volume 307 (1988) no. 12, pp. 693-696 | Zbl
[24] High frequency waves for stringy gravity, Proceedings of the Fifth Marcel Grossmann Meeting on General Relativity, Part A, B (Teaneck, NJ) (D. G. Blair; M. J. Buckingham; R. Ruffini, eds.), World Scientific Publishing, Singapore, 1989, pp. 349-361 (Perth, 1988). MR:1056882
[25] The Einstein–Vlasov system/kinetic theory, Living Rev. Relativ., Volume 14 (2011), 4 | DOI | Zbl
[26] Problème de Cauchy pour le système intégro-différentiel d’Einstein-Liouville. (Cauchy problem for the Einstein-Liouville integro-differential system), Ann. Inst. Fourier, Volume 21 (1971) no. 3, pp. 181-201 https://eudml.org/doc/74046 | DOI | Zbl
[27] The Newtonian limit for asymptotically flat solutions of the Vlasov–Einstein system, Commun. Math. Phys., Volume 163 (1994) no. 1, pp. 89-112 | DOI | Zbl
[28] Compensated compactness and corrector stress tensor for the Einstein equations in symmetry, Port. Math. (N.S.), Volume 77 (2020) no. 3–4, pp. 409-421 | DOI | Zbl
[29] The General Theory of Homogenization, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin; UMI, Bologna, 2009 | DOI
[30] Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math., Volume 39 (1986) no. 2, pp. 267-282 | DOI | Zbl
[31] The null condition and global existence to nonlinear wave equations, Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, NM, 1984) (Lectures in Applied Mathematics), Volume 23, American Mathematical Society, Providence, RI, 1986, pp. 293-326 | Zbl
[32] Compacite par compensation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., Volume 5 (1978), pp. 489-507 https://eudml.org/doc/83787 | Zbl
[33] Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot–Watt Symposium, Vol. 4, Edinburgh 1979 (Research Notes in Mathematics), Volume 39, Pitman Publishing Ltd., London, 1979, pp. 136-212 | Zbl
[34] Dissipative continuous Euler flows, Invent. Math., Volume 193 (2013) no. 2, pp. 377-407 | DOI | Zbl
[35] Weak stability and closure in turbulence, Phil. Trans. R. Soc. A (2022) no. 380, 20210091 | DOI
[36] A proof of Onsager’s conjecture, Ann. Math. (2), Volume 188 (2018) no. 3, pp. 871-963 | DOI | Zbl
[37] Normal forms and quadratic nonlinear Klein-Gordon equations, Commun. Pure Appl. Math., Volume 38 (1985), pp. 685-696 | DOI | Zbl
[38] Transparent nonlinear geometric optics and Maxwell-Bloch equations, J. Differ. Equ., Volume 166 (2000) no. 1, pp. 175-250 | DOI | Zbl
[39] Space time resonances [after Germain, Masmoudi, Shatah], Séminaire Bourbaki Volume 2011/2012 exposés 1043-1058 (Astérisque, no. 352), Société mathématique de France, 2013 | Zbl
[40] The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41, Princeton University Press, Princeton, NJ, 1993
[41] The global stability of Minkowski space–time in harmonic gauge, Ann. of Math. (2), Volume 171 (2010) no. 3, pp. 1401-1477 | DOI | Zbl
[42] The null condition and asymptotic expansions for the Einstein equations, Ann. Phys. (8), Volume 9 (2000) no. 3–5, pp. 258-266 | DOI | Zbl
[43] The weak null condition for Einstein’s equations, C. R., Math., Acad. Sci. Paris, Volume 336 (2003) no. 11, pp. 901-906 | DOI | Zbl
[44] The bounded L curvature conjecture, Invent. Math., Volume 202 (2015) no. 1, pp. 91-216 | DOI | Zbl
[45] Dark energy from structure: a status report, Gen. Relativ. Gravit., Volume 40 (2008) no. 2, pp. 467-527 | DOI | Zbl
[46] On cosmic acceleration without dark energy, New J. Phys., Volume 8 (2006) no. 12, 322 | DOI
[47] Examples of backreaction of small-scale inhomogeneities in cosmology, Phys. Rev. D, Volume 87 (2013), 124037 | DOI | Zbl
[48] Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?, Class. Quantum Gravity, Volume 32 (2015) no. 21, 215021 | DOI | Zbl
[49] Comments on backreaction, preprint, 2015 | arXiv
[50] Oscillations in wave map systems and homogenization of the Einstein equations in symmetry, preprint, 2021 | arXiv
[51] High-frequency backreaction for the Einstein equations under polarized -symmetry, Duke Math. J., Volume 167 (2018) no. 18, pp. 3315-3402 | DOI | Zbl
[52] Trilinear compensated compactness and Burnett’s conjecture in general relativity, Ann. Sci. Éc. Norm. Supér. (4), Volume 57 (2024) no. 2, pp. 385-472 | DOI | Zbl
[53] Burnett’s conjecture in generalized wave coordinates, preprint, 2024 | arXiv
[54] High-frequency backreaction for the Einstein equations under symmetry: from Einstein-dust to Einstein–Vlasov, 2024 (In preparation)
[55] High-frequency limits and null dust shell solutions in general relativity, preprint, 2020 | arXiv
[56] Geometric optics approximation for the einstein vacuum equations, Commun. Math. Phys., Volume 402 (2023) no. 3, pp. 3109-3200 | DOI | Zbl
[57] The reverse Burnett conjecture for null dusts, preprint, 2024 | arXiv
[58] Bounded variation solutions of the spherically symmetric Einstein-scalar field equations, Commun. Pure Appl. Math., Volume 46 (1993) no. 8, pp. 1131-1220 | DOI
[59] The mathematics of nonlinear optics, Handbook of Differential Equations (C. M. Dafermos; M. Pokorný, eds.) (Handbook of Differential Equations: Evolutionary Equations), Volume 5, North-Holland, Amsterdam, 2009, pp. 169-313 | DOI | Zbl
[60] Hyperbolic Partial Differential Equations and Geometric Optics, Graduate Studies in Mathematics, 133, American Mathematical Society, Providence, RI, 2012 | DOI
[61] Asymptotic solutions of oscillatory initial value problems, Duke Math. J., Volume 24 (1957), pp. 627-646 | DOI | Zbl
[62] Uniformisation et développement asymptotique de la solution du problème de Cauchy linéaire, à données holomorphes; analogie avec la théorie des ondes asymptotiques et approchées. (Problème de Cauchy I bis et VI), Bull. Soc. Math. Fr., Volume 92 (1964), pp. 263-361 | DOI | Zbl
[63] Geometric optics for gauge invariant semilinear systems, Mém. Soc. Math. Fr., Nouv. Sér., Volume 90 (2002), p. vi + 160 https://smf.emath.fr/publications/optique-geometrique-pour-des-systemes-semi-lineaires-avec-invariance-de-jauge | Zbl
[64] Multi-phase high frequency solutions to Klein–Gordon–Maxwell equations in Lorenz gauge in (3 + 1) Minkowski spacetime, preprint, 2024 | arXiv
[65] Weakly nonlinear high frequency waves, Commun. Pure Appl. Math., Volume 36 (1983), pp. 547-569 | DOI | Zbl
[66] Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves, Duke Math. J., Volume 70 (1993) no. 2, pp. 373-404 | DOI | Zbl
[67] An existence theorem for the reduced Einstein equation, C. R. Acad. Sci. Paris Sér. I Math., Volume 319 (1994) no. 2, pp. 153-159 (MR: 1288395) | Zbl
[68] Future global in time Einsteinian spacetimes with U(1) isometry group, Ann. Henri Poincaré, Volume 2 (2001) no. 6, pp. 1007-1064 | DOI | Zbl
[69] Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case. II, Asymp. Analy., Volume 96 (2016) no. 1, pp. 51-89 | DOI
[70] Stability of Minkowski space–time with a translation space-like Killing field, Ann. PDE, Volume 4 (2018) no. 1, 12 | DOI
[71] Squeezing a fixed amount of gravitational energy to arbitrarily small scales, in symmetry, preprint, 2022 | arXiv
[72] Nonlinear interaction of three impulsive gravitational waves I: main result and the geometric estimates, preprint, 2021 ([gr-qc]) | arXiv
[73] Nonlinear interaction of three impulsive gravitational waves. II: The wave estimates, Ann. PDE, Volume 9 (2023) no. 1, 10 | DOI | Zbl
[74] Einstein equations under polarized symmetry in an elliptic gauge, Commun. Math. Phys., Volume 361 (2018) no. 3, pp. 873-949 | DOI | Zbl
[75] Einstein vacuum equations with symmetry in an elliptic gauge: Local well-posedness and blow-up criterium, J. Hyperbolic Differ. Equ., Volume 19 (2022) no. 04, pp. 635-715 | DOI | Zbl
[76] Nonlinear stability of the slowly-rotating Kerr-de Sitter family, preprint, 2021 | arXiv
[77] Linear stability of the slowly-rotating Kerr-de Sitter family, preprint, 2022 | arXiv
[78] The global non-linear stability of the Kerr-de Sitter family of black holes, Acta Math., Volume 220 (2018) no. 1, pp. 1-206 | DOI
[79] Evolution of binary black-hole spacetimes, Phys. Rev. Lett., Volume 95 (2005), 121101 | DOI
[80] Motion of isolated bodies, Class. Quantum Gravity, Volume 23 (2006) no. 20, pp. 5941-5949 | DOI
[81] High-frequency solutions to the constraint equations, Commun. Math. Phys., Volume 402 (2023) no. 1, pp. 97-140 | DOI | Zbl
[82] Semi-classical measures and defect measures, Séminaire Bourbaki. Volume 1996/97. Exposés 820–834, Société Mathématique de France, Paris, 1997, pp. 167-195 ex (French) | Zbl
[83] Microlocal defect measures, Commun. Partial Differ. Equ., Volume 16 (1991) no. 11, pp. 1761-1794 | DOI | Zbl
[84] H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 115 (1990) no. 3–4, pp. 193-230 | DOI | Zbl
[85] Oscillations and energy densities in the wave equation, Commun. Partial Differ. Equ., Volume 17 (1992) no. 11–12, pp. 1785-1865 | DOI | Zbl
[86] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992) no. 5, pp. 1024-1065 | DOI | Zbl
[87] A necessary and sufficient condition for the exact controllability of the wave equation, C. R. Acad. Sci., Paris, Sér. I, Math., Volume 325 (1997) no. 7, pp. 749-752 | DOI | Zbl
[88] Trilinear compensated compactness and nonlinear geometric optics, Ann. Math. (2), Volume 142 (1995) no. 1, pp. 121-169 | DOI | Zbl
[89] The Einstein–Klein–Gordon coupled system: global stability of the Minkowski solution, Annals of Mathematics Studies, 213, Princeton University Press, Princeton, NJ, 2022
[90] The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2009 | DOI
[91] The linear stability of the Schwarzschild solution to gravitational perturbations, Acta Math., Volume 222 (2019) no. 1, pp. 1-214 | DOI | Zbl
[92] The Evolution Problem in General Relativity, Progress in Mathematical Physics, 25, Birkhäuser Boston, Inc., Boston, MA, 2003 | DOI
[93] On the local existence for the characteristic initial value problem in general relativity, Int. Math. Res. Not., Volume 2012 (2012) no. 20, pp. 4625-4678 | DOI | Zbl
[94] Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations, Camb. J. Math., Volume 5 (2017) no. 4, pp. 435-570 | DOI
[95] Local propagation of impulsive gravitational waves, Commun. Pure Appl. Math., Volume 68 (2015) no. 4, pp. 511-624 | DOI
[96] Gravitational radiation from collapsing cosmic string loops, Phys. Lett. B, Volume 246 (1990) no. 1, pp. 36-38 | DOI
[97] Naked singularities, 6th Texas symposium on Relativistic astrophysics. New York, NY, USA, December 18–22, 1972, New York Academy of Sciences, New York, 1973, pp. 125-134 | Zbl
[98] Asymptotic stability of Minkowski space–time with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal., Volume 242 (2021) no. 1, pp. 1-147 | DOI
[99] The global nonlinear stability of Minkowski space for the massless Einstein–Vlasov system, Ann. PDE, Volume 3 (2017) no. 1, 9 | DOI
[100] Models for self-gravitating photon shells and geons, Ann. Henri Poincaré, Volume 18 (2017) no. 2, pp. 681-705 | DOI
[101] Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège, Volume 70 (2001) no. 4–6, pp. 267-306 | Zbl
[102] Large amplitude gravitational waves, J. Math. Phys., Volume 40 (1999) no. 6, pp. 3035-3052 | DOI
[103] Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations, Commun. Pure Appl. Math., Volume 60 (2007) no. 10, pp. 1522-1557 | DOI
[104] On the formation of trapped surfaces, Acta Math., Volume 208 (2012) no. 2, pp. 211-333 | DOI
[105] Trapped surfaces in vacuum arising dynamically from mild incoming radiation, Adv. Theor. Math. Phys., Volume 21 (2017) no. 1, pp. 1-120 | DOI
[106] Un système hyperbolique non strict pour les équations d’Einstein, C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Volume 323 (1996) no. 12, pp. 835-841
[107] Équations et systèmes non-linéaires, hyperboliques non-stricts, Math. Ann., Volume 170 (1967), pp. 167-205 https://eudml.org/doc/161535 | DOI
[108] Nonstrict and strict hyperbolic systems for the Einstein equations, preprint, 2001 | arXiv
Cited by Sources:
Comments - Policy