[La diode électroluminescente à microcavité : un émetteur de lumière planaire efficace pour des applications en télécommunications]
Les diodes électroluminescentes (LEDs) peuvent être couplées à des fibres optiques et utilisées pour des applications en télécommunications. Ce couplage est généralement assez faible, en comparaison de celui qui est obtenu avec des diodes laser. Ceci est dû principalement à l'émission isotropique de la source, combinée à la grande différence d'indice de réfraction entre le semiconducteur et le milieu extérieur. Cependant, l'extraction optique d'une LED planaire peut être largement augmentée si la source est placée à l'intérieur d'une microcavité dont l'épaisseur est proche de la longueur d'onde de la lumière émise. Nous expliquons ici quelques règles fondamentales de conception d'une LED à microcavité (MCLED), et nous les illustrons avec l'exemple d'un composant réel en GaAs/AlxGa1−xAs, émettant à 880 nm. Le rendement quantique externe de cette MCLED atteint 14 % pour une emission dans l'air et 20,6 % avec une encapsulation dans une lentille en époxy. Ces valeurs sont près de dix fois supérieures à celles d'une LED standard, et sont en bon accord avec les valeurs théoriques, calculées à l'aide d'un modèle d'ondes planes.
Light emitting diodes (LEDs) can be coupled to optical fibers and used in telecommunication applications. Compared to laser diodes, the coupling is usually small, due to the isotropic emission of the source, combined with the large refractive index difference between the semiconductor and the outside medium. However, it is possible to greatly enhance the optical extraction of a planar LED by placing the source inside a microcavity which optical thickness is close to the wavelength of the emitted light. Some elementary design rules of a microcavity light emitting diode (MCLED) are explained here, and are illustrated on a real GaAs/AlxGa1−xAs device emitting at 880 nm. The surface external quantum efficiency of this MCLED reaches 14% into air and 20.6% with an encapsulation into an epoxy lens. These values are about 10 times larger than for a usual LED and are in good agreement with theoretical values, calculated with a plane waves model.
Publié le :
Mot clés : diode électroluminescente, microcavité, brillance, Fabry–Pérot, semiconducteurs
Daniel Ochoa 1 ; Romuald Houdré 1 ; Marc Ilegems 1 ; Christian Hanke 2 ; Bernt Borchert 2
@article{CRPHYS_2002__3_1_3_0, author = {Daniel Ochoa and Romuald Houdr\'e and Marc Ilegems and Christian Hanke and Bernt Borchert}, title = {Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications}, journal = {Comptes Rendus. Physique}, pages = {3--14}, publisher = {Elsevier}, volume = {3}, number = {1}, year = {2002}, doi = {10.1016/S1631-0705(02)01291-4}, language = {en}, }
TY - JOUR AU - Daniel Ochoa AU - Romuald Houdré AU - Marc Ilegems AU - Christian Hanke AU - Bernt Borchert TI - Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications JO - Comptes Rendus. Physique PY - 2002 SP - 3 EP - 14 VL - 3 IS - 1 PB - Elsevier DO - 10.1016/S1631-0705(02)01291-4 LA - en ID - CRPHYS_2002__3_1_3_0 ER -
%0 Journal Article %A Daniel Ochoa %A Romuald Houdré %A Marc Ilegems %A Christian Hanke %A Bernt Borchert %T Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications %J Comptes Rendus. Physique %D 2002 %P 3-14 %V 3 %N 1 %I Elsevier %R 10.1016/S1631-0705(02)01291-4 %G en %F CRPHYS_2002__3_1_3_0
Daniel Ochoa; Romuald Houdré; Marc Ilegems; Christian Hanke; Bernt Borchert. Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications. Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 3-14. doi : 10.1016/S1631-0705(02)01291-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01291-4/
[1] High brightness light emitting diodes (M.G. Craford; G.B. Stringfellow, eds.), Semiconductors and Semimetals, Vol. 48, Academic Press, San Diego, 1997
[2] Engineering with high brightness LEDs, Compound Semicond., Volume 6 (2000) no. 2, pp. 40-45
[3] Another semiconductor revolution: this time it's lighting, Compound Semicond., Volume 6 (2000) no. 2, pp. 34-37
[4] High luminous flux semiconductor wafer-bonded AlGaInP/GaP large-area emitter, Electron. Lett., Volume 30 (1994) no. 21, pp. 1790-1791
[5] ‘Craford's law’ and the evolution of the LED industry, Compound Semicond., Volume 6 (2000) no. 2, pp. 26-30
[6] Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer, Appl. Phys. Lett., Volume 61 (1992) no. 9, pp. 1045-1047
[7] Very high-efficiency semiconductor wafer-bonded transparent substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes, Appl. Phys. Lett., Volume 64 (1994) no. 21, pp. 2839-2841
[8] Electron. Lett., 32 (1996), p. 132
[9] 1.4×efficiency improvement in transparent-substrate (AlxGa1−x)0.5In0.5P light-emitting diodes with thin (⩽2000 A) active regions, Appl. Phys. Lett., Volume 74 (1999) no. 15, pp. 2230-2232
[10] High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting ⩾50% external quantum efficiency, Appl. Phys. Lett., Volume 75 (1999) no. 16, pp. 2365-2367
[11] Photometric figures of merit for semiconductor luminescent sources operating in spontaneous mode, Infrared Phys., Volume 6 (1966), pp. 1-19
[12] Impact of planar microcavity effects on light extraction: I. Basic concepts and analytical trends, IEEE J. Quantum Electron., Volume 34 (1998), p. 1612
[13] Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities, Appl. Phys. Lett., Volume 57 (1990) no. 26, pp. 2814-2816
[14] Physics and device applications of optical microcavities, Science, Volume 256 (1992), pp. 66-70
[15] Modification of spontaneous emission rate in planar dielectric microcavity structures, Phys. Rev. A, Volume 44 (1991), pp. 669-681
[16] Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers, Phys. Rev. A, Volume 47 (1993) no. 5, pp. 4451-4463
[17] Resonant cavity light-emitting diode, Appl. Phys. Lett., Volume 60 (1992) no. 8, pp. 921-923
[18] Power and efficiency limits in single-mirror light emitting diodes with enhanced intensity, Electron. Lett., Volume 28 (1992) no. 23, pp. 2169-2171
[19] Enhanced spectral power density and reduced linewidth at 1.3 μm in an InGaAsP quantum well resonant-cavity light-emitting diode, Appl. Phys. Lett., Volume 61 (1992) no. 19, pp. 2287-2289
[20] Highly efficient light-emitting diodes with microcavities, Science, Volume 265 (1994), pp. 943-945
[21] High efficiency, narrow spectrum resonant cavity Light Emitting Diodes (E. Burstein; C. Weisbuch, eds.), Confined Electrons and Photons, Plenum Press, New York, 1995, pp. 703-714
[22] Recycling of guided mode light emission in planar microcavity light emitting diodes, Appl. Phys. Lett., Volume 70 (1997), pp. 799-801
[23] Tunnel contact junction native-oxide aperture and mirror vertical-cavity surface-emitting lasers and resonant-cavity light-emitting diodes, Appl. Phys. Lett., Volume 74 (1999), pp. 926-928
[24] 880 nm surface emitting microcavity light emitting diode (H.W. Yao; E.F. Schubert, eds.), Light-Emitting Diodes: Research, Manufacturing, and Applications V, Proceedings of SPIE, 4278, 2001, pp. 70-80
[25] Atomes à l'intérieur d'un interféromètre Pérot–Fabry, Appl. Opt., Volume 1 (1962) no. 1, pp. 17-24
[26] Method of source terms for dipole emission modification in modes of arbitrary planar structures, J. Opt. Soc. Am. A, Volume 15 (1998), pp. 1192-1201
[27] Device simultaneous determination of the source and cavity parameters of a microcavity light-emitting diode, J. Appl. Phys., Volume 85 (1999), pp. 2994-2996
[28] D. Ochoa, Diodes électroluminescentes planaires à haut rendement d'extraction lumineux, PhD thesis, École polytechnique fédérale de Lausanne, Micro and Opto-electronics Institute, EPFL, 1015 Lausanne, Switzerland, 2001
[29] Spontaneous emission model of lateral light extraction from heterostructure light-emitting diodes, Appl. Phys. Lett., Volume 76 (2000) no. 22, pp. 3179-3181
[30] R. Stanley, R. Houdré, M. Ilegems, Limits of high contrast mirrors for microcavity LEDs, in preparation
[31] Phys. Rev., 69 (1946), p. 681
[32] Light emitted by multipole sources in thin layers. I. Radiation patterns of electric and magnetic dipoles, J. Opt. Soc. Am., Volume 71 (1981), pp. 744-754
[33] Optical properties of AlGaAs: Transparent and interband transition regions (tables) (S. Adachi, ed.), Properties of Aluminium Gallium Arsenide, 7, Inspec Publication, 1991, pp. 126-140
[34] Integrated Opto-Electronics (K.J. Ebeling, ed.), Springer-Verlag, New York, 1991
[35] Fabrication and characterization of high efficiency microcavity light emitting diodes, PhD thesis, École polytechnique fédérale de Lausanne, DP IMO EPFL, 1015 Lausanne, CH, 1999
Cité par Sources :
Commentaires - Politique