[Cristaux photoniques bi-dimensionnels : des systèmes optiques confinés nouveaux et faisables]
Après un bref passage en revue des propriétés de base des cristaux photoniques bi-dimensionnels idéaux, nous décrivons les avancées récentes qui montrent comment mettre à profit leurs puissantes capacités de contrôle de la lumière dans des systèmes optoélectroniques faisables. Deux des domaines d'application principaux sont l'optique intégrée et les fibres microstructurées. Nous nous concentrons sur le premier, plus proche du concept d'origine de bande interdite photonique. Nous illustrons au travers de divers éléments optiques – simple cristaux, guides, cavités – les particularités du confinement dans ces systèmes.
After a brief review of the basic properties of ideal two-dimensional photonic crystals, we describe the recent advances that have led to them being considered candidates in realistic, feasible optoelectronic systems that take advantage of their powerful light control capability. Two main fields of applications are integrated optics and microstructured fibres. We focus on the former one, closer to the genuine photonic gap concept. We illustrate through a number of optical elements – simple crystals, guides and cavities – the peculiarities of confinement by such systems.
Publié le :
Mot clés : cristal photonique, bande interdite photonique, optique intégrée, fibre optique, guide, cavité
Henri Benisty 1 ; Maxime Rattier 1 ; Ségolène Olivier 1
@article{CRPHYS_2002__3_1_89_0, author = {Henri Benisty and Maxime Rattier and S\'egol\`ene Olivier}, title = {Two-dimensional photonic crystals: new feasible confined optical systems}, journal = {Comptes Rendus. Physique}, pages = {89--102}, publisher = {Elsevier}, volume = {3}, number = {1}, year = {2002}, doi = {10.1016/S1631-0705(02)01300-2}, language = {en}, }
TY - JOUR AU - Henri Benisty AU - Maxime Rattier AU - Ségolène Olivier TI - Two-dimensional photonic crystals: new feasible confined optical systems JO - Comptes Rendus. Physique PY - 2002 SP - 89 EP - 102 VL - 3 IS - 1 PB - Elsevier DO - 10.1016/S1631-0705(02)01300-2 LA - en ID - CRPHYS_2002__3_1_89_0 ER -
Henri Benisty; Maxime Rattier; Ségolène Olivier. Two-dimensional photonic crystals: new feasible confined optical systems. Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 89-102. doi : 10.1016/S1631-0705(02)01300-2. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01300-2/
[1] Guided Wave Optoelectronics (T. Tamir, ed.), Springer-Verlag, Berlin, 1990
[2] Microcavities and Photonic Band Gaps: Physics and Applications (C. Weisbuch; J. Rarity, eds.), Kluwer, Dordrecht, 1996
[3] Confined Photon Systems: Fundamentals and Applications (H. Benisty; J.-M. Gérard; R. Houdré; J. Rarity; C. Weisbuch, eds.), Springer, Heidelberg, 1999
[4] Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., Volume 58 (1987), pp. 2059-2062
[5] Existence of a photonic band gap in two dimensions, Appl. Phys. Lett., Volume 61 (1992), p. 495
[6] Photonic Crystals, Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995
[7] Photonic band gaps and defects in two dimensions: studies of the transmission coefficient, Phys. Rev. B, Volume 48 (1993), pp. 14121-14126
[8] Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices, Phys. Rev. B, Volume 52 (1995), p. 7982
[9] Measurement of photonic band structure in a two-dimensional periodic array, Phys. Rev. Lett., Volume 68 (1992), pp. 2023-2026
[10] Coupled wave theory of distributed feedback lasers, J. Appl. Phys., Volume 43 (1972), pp. 2327-2335
[11] Off-plane dependence angle of photonic band gap in a two-dimensional photonic crystal, IEEE J. Quantum Electron., Volume 32 (1996), pp. 535-541
[12] Macroporous silicon with a complete 2D PBG centered at 5 μm, Appl. Phys. Lett., Volume 68 (1996), pp. 747-749
[13] Macroporous silicon photonic crystals at 1.55 micrometers, Electron. Lett., Volume 35 (1999), pp. 753-755
[14] Macroporous silicon: a two-dimensional photonic bandgap material suitable for the near-infrared spectral range, Phys. Status Solidi A, Volume 165 (1998), pp. 111-117
[15] Reflection and transmission characterisation of a hexagonal photonic crystal in the mid infrared, J. Appl. Phys., Volume 83 (1998), p. 5061
[16] Single-mode transmission in two-dimensional maroporous silicon photonic crystal waveguides, Opt. Lett., Volume 25 (2000), pp. 1550-1552
[17] Attenuation of optical transmission within the band gap of thin two-dimensional macroporous silicon photonic crystals, Appl. Phys. Lett., Volume 75 (1999), pp. 3063-3065
[18] In-plane microcavity resonators with two-dimensional photonic bandgap mirrors, IEE-Proc.-Optoelectron., Volume 145 (1998), pp. 373-378
[19] Performance of waveguide-based two-dimensional photonic-crystal mirrors studied with Fabry–Pérot resonators, IEEE J. Quantum Electron., Volume 37 (2001), pp. 237-243
[20] Modal analysis of optical guides with two-dimensional photonic band-gap boundaries, J. Appl. Phys., Volume 79 (1996), pp. 7483-7492
[21] Triangular and hexagonal high Q-Factor 2D photonic bandgap cavities on III–V suspended membranes, J. Lightwave Technol., Volume 17 (1999), pp. 2058-2062
[22] Tunable microcavity based on InP-Air Bragg mirrors, IEEE J. Quantum Electron., Volume 5 (1999), pp. 111-114
[23] Design and fabrication of silicon photonic crystal optical waveguides, J. Lightwave Technol., Volume 18 (2000), pp. 1402-1411
[24] Waveguiding in planar photonic crystals, Appl. Phys. Lett., Volume 77 (2000), pp. 1937-1939
[25] Resonant coupling of near-infrared radiation to photonic band structure waveguides, J. Lightwave Technol., Volume 17 (1999), pp. 2050-2057
[26] Scattering-matrix treatment of patterned multilayer photonic structures, Phys. Rev. B, Volume 60 (1999), pp. 2610-2618
[27] Air bridge microcavities, Appl. Phys. Lett., Volume 67 (1995), pp. 167-169
[28] Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths, Appl. Phys. Lett., Volume 71 (1999), pp. 1522-1524
[29] Near-infrared microcavities confined by two-dimensional photonic bandgap crystals, Electron. Lett., Volume 35 (1999), pp. 228-230
[30] Directionnally dependent confinement in photonic-crystal microcavities, J. Opt. Soc. Am. B, Volume 17 (2000), pp. 2043-2051
[31] et al. Optical and confinement properties of two-dimensional photonic crystals, J. Lightwave Technol., Volume 17 (1999), pp. 2063-2077
[32] Photonic crystal microcavities with self-assembled InAs quantum dots as active emitters, Appl. Phys. Lett., Volume 78 (2001), pp. 2279-2281
[33] Observation of light propagation in photonic crystal optical waveguides with bends, Electron. Lett., Volume 35 (1999), pp. 654-655
[34] Lightwave propagation through a 120°sharply bent single-line-defect photonic crystal waveguide, Appl. Phys. Lett., Volume 76 (2000), pp. 952-954
[35] Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal, Phys. Rev. Lett., Volume 86 (2001), pp. 2289-2292
[36] Modal reflectivity in finite-depth two-dimensional photonic crystal microcavities, J. Opt. Soc. Am. B, Volume 15 (1998), pp. 1155-1159
[37] Defect modes of a two-dimensional crystal in an optically thin dielectric slab, J. Opt. Soc. Am. B, Volume 16 (1999), pp. 275-285
[38] High extraction efficiency of spontaneous emission from slabs of photonic crystals, Phys. Rev. Lett., Volume 78 (1997), p. 3294
[39] Light extraction from optically pumped light-emitting diode by thin-slab photonic crystal, Appl. Phys. Lett., Volume 75 (1999), pp. 1036-1038
[40] et al. High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency, Appl. Phys. Lett., Volume 75 (1999), p. 2365
[41] M. Rattier et al., High extraction efficiency, laterally injected, light emitting diodes combining microcavities and photonic crystals, Opt. Quantum Electron., in press
[42] et al. Three-dimensional control of light in a two-dimensional crystal slab, Nature, Volume 407 (2000), pp. 983-986
[43] Quantitative analysis of bending efficiency in photonic crystal waveguide bends at λ=1.55 μm wavelengths, Opt. Lett., Volume 26 (2001), pp. 286-288
[44] Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature, Volume 383 (1996), pp. 699-702
[45] et al. Fundamentals and Applications of Confined Photon Systems (H. Benisty; J.-M. Gérard; R. Houdré; J. Rarity; C. Weisbuch, eds.), Springer, Heidelberg, 1999
[46] Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using InAs quantum dots emission, Phys Rev. B, Volume 59 (1999), pp. 1649-1652
[47] et al. Quantitative measurement of transmission, reflection and diffraction of two-dimensional photonic bandgap structures at near-infrared wavelengths, Phys. Rev. Lett., Volume 79 (1997), pp. 4147-4150
[48] Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals, Appl. Phys. Lett., Volume 71 (1997), pp. 738-740
[49] See the Optimist web site of the IST-EU program, http://www.intec.rug.ac.be/ist-optimist/wshp.asp
[50] Radiation losses of waveguide-based two-dimensional photonic crystals: positive role of the substrate, Appl. Phys. Lett., Volume 76 (2000), pp. 532-534
[51] Ultimate limits of two-dimensional photonic crystals etched through waveguides: an electromagnetic analysis, J. Appl. Phys., Volume 89 (2001), pp. 1512-1514
[52] H. Benisty, P. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C.J.M. Smith, T.F. Krauss, C. Jouanin, D. Cassagne, Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals, Opt. Quantum Electron., in press
[53] et al. Out-of-plane scattering in photonic crystals, IEEE Phot. Technol. Lett., Volume 13 (2001), pp. 565-567
[54] High-finesse disk microcavity based on a circular Bragg reflector, Appl. Phys. Lett., Volume 73 (1998), pp. 1314-1316
[55] Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes, Appl. Phys. Lett., Volume 79 (2001), p. 2312
[56] Coupled guide and cavity in a two-dimensional photonic crystal, Appl. Phys. Lett., Volume 78 (2001), pp. 1487-1489
[57] Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal, Appl. Phys. Lett., Volume 79 (2001), pp. 2514-2516
[58] Quantitative measurements of low propagation losses at 1.55 μm on planar photonic crystal waveguides, Opt. Lett., Volume 26 (2001), pp. 1259-1261
[59] J. Moosbürger, M. Kamp, A. Forchel, Paper JTuB2, Transmission spectra measurements on photonic crystals based bent waveguides, in: CLEO, Baltimore, May 6–11, 2001
[60] Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5 μm wavelength, Opt. Lett., Volume 25 (2000), pp. 1297-1299
[61] Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature, Volume 407 (2000), pp. 608-610
[62] Edge-emitting semiconductor microlasers with ultrashort-cavity and dry-etched high-reflectivity photonic microstructure mirrors, IEEE Photon. Technol. Lett., Volume 13 (2001), pp. 176-178
[63] Dapkus, Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP, J. Lightwave Technol., Volume 17 (1999), pp. 2082-2088
[64] Nondegenerate monopole-mode two-dimensional photonic band gap laser, Appl. Phys. Lett., Volume 79 (2001), pp. 3032-3034
[65] Dipole radiation into grating structures, J. Opt. Soc. Am. A, Volume 17 (2000), pp. 1048-1058
[66] M. Forchel et al., Lasers with PBG mirrors, in: IPRM'99, Davos, 1999
[67] Bent laser cavity based on 2D photonic crystal waveguide, Electron. Lett., Volume 26 (2000), pp. 324-325
[68] Integrated Optics: Design and Modeling (B. Culshaw; A. Rogers; A. Taylor, eds.), The Artech House Optoelectronics Library, Artech House, Boston, 1994
[69] Highly birefringent photonic crystal fibres, Opt. Lett., Volume 25 (2000), pp. 1325-1327
Cité par Sources :
Commentaires - Politique