Comptes Rendus
Microcavités et cristaux photoniques/Microcavities and photonic crystals
Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications
[La diode électroluminescente à microcavité : un émetteur de lumière planaire efficace pour des applications en télécommunications]
Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 3-14.

Les diodes électroluminescentes (LEDs) peuvent être couplées à des fibres optiques et utilisées pour des applications en télécommunications. Ce couplage est généralement assez faible, en comparaison de celui qui est obtenu avec des diodes laser. Ceci est dû principalement à l'émission isotropique de la source, combinée à la grande différence d'indice de réfraction entre le semiconducteur et le milieu extérieur. Cependant, l'extraction optique d'une LED planaire peut être largement augmentée si la source est placée à l'intérieur d'une microcavité dont l'épaisseur est proche de la longueur d'onde de la lumière émise. Nous expliquons ici quelques règles fondamentales de conception d'une LED à microcavité (MCLED), et nous les illustrons avec l'exemple d'un composant réel en GaAs/AlxGa1−xAs, émettant à 880 nm. Le rendement quantique externe de cette MCLED atteint 14 % pour une emission dans l'air et 20,6 % avec une encapsulation dans une lentille en époxy. Ces valeurs sont près de dix fois supérieures à celles d'une LED standard, et sont en bon accord avec les valeurs théoriques, calculées à l'aide d'un modèle d'ondes planes.

Light emitting diodes (LEDs) can be coupled to optical fibers and used in telecommunication applications. Compared to laser diodes, the coupling is usually small, due to the isotropic emission of the source, combined with the large refractive index difference between the semiconductor and the outside medium. However, it is possible to greatly enhance the optical extraction of a planar LED by placing the source inside a microcavity which optical thickness is close to the wavelength of the emitted light. Some elementary design rules of a microcavity light emitting diode (MCLED) are explained here, and are illustrated on a real GaAs/AlxGa1−xAs device emitting at 880 nm. The surface external quantum efficiency of this MCLED reaches 14% into air and 20.6% with an encapsulation into an epoxy lens. These values are about 10 times larger than for a usual LED and are in good agreement with theoretical values, calculated with a plane waves model.

Reçu le :
Publié le :
DOI : 10.1016/S1631-0705(02)01291-4
Keywords: light emitting diode, microcavity, brightness, Fabry–Pérot, semiconductors
Mot clés : diode électroluminescente, microcavité, brillance, Fabry–Pérot, semiconducteurs
Daniel Ochoa 1 ; Romuald Houdré 1 ; Marc Ilegems 1 ; Christian Hanke 2 ; Bernt Borchert 2

1 Institut de micro et optoélectronique, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
2 Infineon Technologies CPR PH, Otto-Hahn-Ring 6, 81730 Munich, Germany
@article{CRPHYS_2002__3_1_3_0,
     author = {Daniel Ochoa and Romuald Houdr\'e and Marc Ilegems and Christian Hanke and Bernt Borchert},
     title = {Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications},
     journal = {Comptes Rendus. Physique},
     pages = {3--14},
     publisher = {Elsevier},
     volume = {3},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01291-4},
     language = {en},
}
TY  - JOUR
AU  - Daniel Ochoa
AU  - Romuald Houdré
AU  - Marc Ilegems
AU  - Christian Hanke
AU  - Bernt Borchert
TI  - Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 3
EP  - 14
VL  - 3
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01291-4
LA  - en
ID  - CRPHYS_2002__3_1_3_0
ER  - 
%0 Journal Article
%A Daniel Ochoa
%A Romuald Houdré
%A Marc Ilegems
%A Christian Hanke
%A Bernt Borchert
%T Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications
%J Comptes Rendus. Physique
%D 2002
%P 3-14
%V 3
%N 1
%I Elsevier
%R 10.1016/S1631-0705(02)01291-4
%G en
%F CRPHYS_2002__3_1_3_0
Daniel Ochoa; Romuald Houdré; Marc Ilegems; Christian Hanke; Bernt Borchert. Microcavity light emitting diodes as efficient planar light emitters for telecommunication applications. Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 3-14. doi : 10.1016/S1631-0705(02)01291-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01291-4/

[1] M.G. Craford; G.B. Stringfellow High brightness light emitting diodes (M.G. Craford; G.B. Stringfellow, eds.), Semiconductors and Semimetals, Vol. 48, Academic Press, San Diego, 1997

[2] R. Dixon Engineering with high brightness LEDs, Compound Semicond., Volume 6 (2000) no. 2, pp. 40-45

[3] R. Haitz; F. Kish; J. Tsao; J. Nelson Another semiconductor revolution: this time it's lighting, Compound Semicond., Volume 6 (2000) no. 2, pp. 34-37

[4] F.A. Kish; D.C. Defevere; D.A. Vanderwater; G.R. Trott; R.J. Weiss; J.S. Major High luminous flux semiconductor wafer-bonded AlGaInP/GaP large-area emitter, Electron. Lett., Volume 30 (1994) no. 21, pp. 1790-1791

[5] M. Meyer ‘Craford's law’ and the evolution of the LED industry, Compound Semicond., Volume 6 (2000) no. 2, pp. 26-30

[6] K.H. Huang; J.G. Yu; C.P. Kuo; R.M. Fletcher; T.D. Osentowski; L.J. Stinson; A.S.H. Liao Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555–620 nm spectral region using a thick GaP window layer, Appl. Phys. Lett., Volume 61 (1992) no. 9, pp. 1045-1047

[7] F.A. Kish; F.M. Steranka; D.C. DeFevere; D.A. Vanderwater; K.G. Park; C.P. Kuo; T.D. Osentowski; M.J. Peanasky; J.G. Yu; R.M. Fletcher; D.A. Steigerwald; M.G. Craford; V.M. Robbins Very high-efficiency semiconductor wafer-bonded transparent substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes, Appl. Phys. Lett., Volume 64 (1994) no. 21, pp. 2839-2841

[8] F.A. Kish; D.A. Vanderwater; D.C. DeFevere; D.A. Steigerwald; G.E. Hofler; K.G. Park; F.M. Steranka Electron. Lett., 32 (1996), p. 132

[9] N.F. Gardner; H.C. Chui; E.I. Chen; M.R. Krames; J.W. Huang; F.A. Kish; S.A. Stockman 1.4×efficiency improvement in transparent-substrate (AlxGa1−x)0.5In0.5P light-emitting diodes with thin (⩽2000 A) active regions, Appl. Phys. Lett., Volume 74 (1999) no. 15, pp. 2230-2232

[10] M.R. Krames; M. Ochiai-Holcomb; G.E. Holfer; C. Carter-Coman; E.I. Chen; I.H. Tan; P. Grillot; N.F. Gardner; H.C. Chui; J.W. Huang; S.A. Stockman; F.A. Kish; M.G. Craford; S.T. Tan; C.P. Kocot; M. Hueschen; J. Posselt; B. Loh; G. Sasser; D. Collins High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting ⩾50% external quantum efficiency, Appl. Phys. Lett., Volume 75 (1999) no. 16, pp. 2365-2367

[11] W.N. Carr Photometric figures of merit for semiconductor luminescent sources operating in spontaneous mode, Infrared Phys., Volume 6 (1966), pp. 1-19

[12] H. Benisty; H.D. Neve; C. Weisbuch Impact of planar microcavity effects on light extraction: I. Basic concepts and analytical trends, IEEE J. Quantum Electron., Volume 34 (1998), p. 1612

[13] H. Yokoyama; K. Nishi; T. Anan; H. Yamada; S.D. Brorson; E.P. Ippen Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities, Appl. Phys. Lett., Volume 57 (1990) no. 26, pp. 2814-2816

[14] H. Yokoyama Physics and device applications of optical microcavities, Science, Volume 256 (1992), pp. 66-70

[15] G. Björk; S. Machida; Y. Yamamoto; K. Igeta Modification of spontaneous emission rate in planar dielectric microcavity structures, Phys. Rev. A, Volume 44 (1991), pp. 669-681

[16] G. Björk; H. Heitmann; Y. Yamamoto Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers, Phys. Rev. A, Volume 47 (1993) no. 5, pp. 4451-4463

[17] E.F. Schubert; Y.H. Wang; A.Y. Cho; L.W. Tu; G.J. Zydzik Resonant cavity light-emitting diode, Appl. Phys. Lett., Volume 60 (1992) no. 8, pp. 921-923

[18] N.E.J. Hunt; E.F. Schubert; D.L. Sivco; A.Y. Cho; G.J. Zydzik Power and efficiency limits in single-mirror light emitting diodes with enhanced intensity, Electron. Lett., Volume 28 (1992) no. 23, pp. 2169-2171

[19] N.E.J. Hunt; E.F. Schubert; R.A. Logan; G.J. Zydzik Enhanced spectral power density and reduced linewidth at 1.3 μm in an InGaAsP quantum well resonant-cavity light-emitting diode, Appl. Phys. Lett., Volume 61 (1992) no. 19, pp. 2287-2289

[20] E.F. Schubert; N.E.J. Hunt; M. Micovic; R.J. Malik; D.L. Sivco; A.Y. Cho; G.J. Zydzik Highly efficient light-emitting diodes with microcavities, Science, Volume 265 (1994), pp. 943-945

[21] N.E.J. Hunt High efficiency, narrow spectrum resonant cavity Light Emitting Diodes (E. Burstein; C. Weisbuch, eds.), Confined Electrons and Photons, Plenum Press, New York, 1995, pp. 703-714

[22] H. De Neve; J. Blondelle; P.V. Daele; P. Demeester; R. Baets Recycling of guided mode light emission in planar microcavity light emitting diodes, Appl. Phys. Lett., Volume 70 (1997), pp. 799-801

[23] J.J. Wiener; D.A. Kellog; N. Holonyak Tunnel contact junction native-oxide aperture and mirror vertical-cavity surface-emitting lasers and resonant-cavity light-emitting diodes, Appl. Phys. Lett., Volume 74 (1999), pp. 926-928

[24] D. Ochoa; R. Houdré; R.P. Stanley; M. Ilegems; C. Hanke; B. Borchert 880 nm surface emitting microcavity light emitting diode (H.W. Yao; E.F. Schubert, eds.), Light-Emitting Diodes: Research, Manufacturing, and Applications V, Proceedings of SPIE, 4278, 2001, pp. 70-80

[25] A. Kastler Atomes à l'intérieur d'un interféromètre Pérot–Fabry, Appl. Opt., Volume 1 (1962) no. 1, pp. 17-24

[26] R.P. Stanley; H. Benisty; M. Mayer Method of source terms for dipole emission modification in modes of arbitrary planar structures, J. Opt. Soc. Am. A, Volume 15 (1998), pp. 1192-1201

[27] D. Ochoa; R. Houdré; R.P. Stanley; U. Oesterle; M. Ilegems Device simultaneous determination of the source and cavity parameters of a microcavity light-emitting diode, J. Appl. Phys., Volume 85 (1999), pp. 2994-2996

[28] D. Ochoa, Diodes électroluminescentes planaires à haut rendement d'extraction lumineux, PhD thesis, École polytechnique fédérale de Lausanne, Micro and Opto-electronics Institute, EPFL, 1015 Lausanne, Switzerland, 2001

[29] D. Ochoa; R. Houdré; R.P. Stanley; M. Ilegems; H. Benisty; C. Hanke; B. Borchert Spontaneous emission model of lateral light extraction from heterostructure light-emitting diodes, Appl. Phys. Lett., Volume 76 (2000) no. 22, pp. 3179-3181

[30] R. Stanley, R. Houdré, M. Ilegems, Limits of high contrast mirrors for microcavity LEDs, in preparation

[31] E.M. Purcell Phys. Rev., 69 (1946), p. 681

[32] W. Lukosz Light emitted by multipole sources in thin layers. I. Radiation patterns of electric and magnetic dipoles, J. Opt. Soc. Am., Volume 71 (1981), pp. 744-754

[33] S. Adachi Optical properties of AlGaAs: Transparent and interband transition regions (tables) (S. Adachi, ed.), Properties of Aluminium Gallium Arsenide, 7, Inspec Publication, 1991, pp. 126-140

[34] Integrated Opto-Electronics (K.J. Ebeling, ed.), Springer-Verlag, New York, 1991

[35] C. Dill Fabrication and characterization of high efficiency microcavity light emitting diodes, PhD thesis, École polytechnique fédérale de Lausanne, DP IMO EPFL, 1015 Lausanne, CH, 1999

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Two-dimensional photonic crystals: new feasible confined optical systems

Henri Benisty; Maxime Rattier; Ségolène Olivier

C. R. Phys (2002)


Historical perspective on the physics of artificial lighting

Claude Weisbuch

C. R. Phys (2018)