Comptes Rendus
Photonic crystals: basic concepts and devices
[Cristaux photoniques : concepts de base et des composants]
Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 253-266.

L'art de la microphotonique consiste à confiner les photons, selon une ou plusieurs directions, dans des structures ayant des dimensions de l'ordre de la longueur d'onde et ceci, pour une durée la plus longue possible. L'objectif est alors d'associer ces microstructures afin de réaliser une intégration photonique permettant le traitement de l'information dans des systèmes de faible encombrement en utilisant de faibles puissances optiques. Les cristaux photoniques ont largement démontré ces dernières années leur capacité à atteindre ces objectifs.

The art of microphotonics consists in confining photons, in one or more directions, in structures having dimensions about the wavelength, and doing this for the longest possible duration. The objective is then to associate these microstructures in order to carry out a photonic integration allowing data processing in very compact systems and using low optical powers. Photonic crystals have largely showed these last years their capacity to achieve these goals.

Publié le :
DOI : 10.1016/j.crhy.2006.04.005
Keywords: Photonic crystals, Microphotonics
Mot clés : Cristaux photoniques, Microphotonique
Pierre Viktorovitch 1 ; Emmanuel Drouard 1 ; Michel Garrigues 1 ; Jean Louis Leclercq 1 ; Xavier Letartre 1 ; Pedro Rojo Romeo 1 ; Christian Seassal 1

1 École centrale de Lyon, laboratoire d'électronique (LEOM) – UMR CNRS/ECL, 36, avenue Guy de Collongue, 69134 Ecully cedex, France
@article{CRPHYS_2007__8_2_253_0,
     author = {Pierre Viktorovitch and Emmanuel Drouard and Michel Garrigues and Jean Louis Leclercq and Xavier Letartre and Pedro Rojo Romeo and Christian Seassal},
     title = {Photonic crystals: basic concepts and devices},
     journal = {Comptes Rendus. Physique},
     pages = {253--266},
     publisher = {Elsevier},
     volume = {8},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crhy.2006.04.005},
     language = {en},
}
TY  - JOUR
AU  - Pierre Viktorovitch
AU  - Emmanuel Drouard
AU  - Michel Garrigues
AU  - Jean Louis Leclercq
AU  - Xavier Letartre
AU  - Pedro Rojo Romeo
AU  - Christian Seassal
TI  - Photonic crystals: basic concepts and devices
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 253
EP  - 266
VL  - 8
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.04.005
LA  - en
ID  - CRPHYS_2007__8_2_253_0
ER  - 
%0 Journal Article
%A Pierre Viktorovitch
%A Emmanuel Drouard
%A Michel Garrigues
%A Jean Louis Leclercq
%A Xavier Letartre
%A Pedro Rojo Romeo
%A Christian Seassal
%T Photonic crystals: basic concepts and devices
%J Comptes Rendus. Physique
%D 2007
%P 253-266
%V 8
%N 2
%I Elsevier
%R 10.1016/j.crhy.2006.04.005
%G en
%F CRPHYS_2007__8_2_253_0
Pierre Viktorovitch; Emmanuel Drouard; Michel Garrigues; Jean Louis Leclercq; Xavier Letartre; Pedro Rojo Romeo; Christian Seassal. Photonic crystals: basic concepts and devices. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 253-266. doi : 10.1016/j.crhy.2006.04.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.04.005/

[1] E. Yablonovitch Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. E, Volume 63 (1987), p. 2059

[2] E. Yablonovitch; T.J. Gmitter; K.M. Leung Photonic bandgap structure: the face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett., Volume 67 (1991), p. 2295

[3] P. Lalanne; H. Benisty Out-of-plane losses of two-dimensional photonic crystals waveguides: Electromagnetic analysis, J. Appl. Phys., Volume 89 (2001) no. 2, pp. 1512-1514

[4] P. Viktorovitch Cristaux Photoniques : de la Microphotonique à la Nanophotonique, La Nanophotonique, Hermès-Lavoisier, 2005 (Chapter 1). English version in press

[5] J.-M. Gérard; B. Gayral Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities, IEEE J. Lightwave Technol., Volume 17 (1999), p. 2089 (See, for example)

[6] Y. Akahane; T. Asano; B.S. Song; S. Noda High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, Volume 425 (2003), p. 944

[7] X. Letartre; J. Mouette; C. Seassal; P. Rojo-Romeo; J.-L. Leclercq; P. Viktorovitch Switching devices with spatial and spectral resolution combining Photonic Crystal and MOEMS structures, J. Lightwave Technol., Volume 21 (2003), p. 1691

[8] S. John Strong localisation of photons in certain distordered superlattices, Phys. Rev. Lett., Volume 58 (1987), p. 2486

[9] C. Monat; C. Seassal; X. Letartre; P. Viktorovitch; P. Regreny; M. Gendry; P. Rojo-Romeo; G. Hollinger; E. Jalaguier; S. Pocas; B. Aspar InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm, Electron. Lett., Volume 37 (2001), p. 764 (See, for example)

[10] P. Pottier; Ch. Seassal; X. Letartre; J.L. Leclercq; P. Viktorovitch; D. Cassagne; Ch. Jouanin Triangular and hexagonal high Q-factor 2D photonic bandgap cavities on III–V suspended membranes, J. Lightwave Technol., Volume 17 (1999), p. 2058

[11] X. Letartre; Ch. Seassal; Ch. Grillet; P. Rojo-Romeo; P. Viktorovitch; M. Le Vassor D'yerville; D. Cassagne; Ch. Jouanin Group velocity and propagation losses measurement in a single line photonic crystal waveguide on InP membranes, Appl. Phys. Lett., Volume 79 (2001), p. 2312

[12] Sharee McNab; Nikolaj Moll; Yurii Vlasov Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides, Opt. Express, Volume 11 (2003), p. 2927

[13] O. Painter; R.K. Lee; A. Scherer; A. Yariv; J.D. O'Brien; P.D. Dapkus; L. Kim Two-dimensional photonic band-gap defect mode laser, Science, Volume 284 (1999), p. 1819

[14] S. Fan; P.R. Villeneuve; J.D. Joannopoulos; H.A. Hauss; C. Seassal; Y. Desieres; X. Letartre; C. Grillet; P. Rojo-Romeo; P. Viktorovitch; T. Benyattou Channel drop tunneling through localized states, Phys. Rev. Lett., Volume 80 (1998), p. 960 (See also Optical coupling between a two-dimensional photonic crystal-based microcavity and single-line defect waveguide IEEE J. Quant. Electron., 38, 2002, pp. 811)

[15] C. Monat; Ch. Seassal; X. Letartre; Ph. Regreny; P. Rojo-Romeo; P. Viktorovitch; M. Le Vassor D'yerville; D. Cassagne; J.P. Albert; E. Jalaguier; S. Pocas; B. Aspar InP based 2D Photonic Crystal on silicon: in-plane Bloch mode laser, Appl. Phys. Lett., Volume 81 (2002), p. 5102

[16] E. Drouard; H.T. Hattori; C. Grillet; A. Kazmierczak; X. Letartre; P. Rojo-Romeo; P. Viktorovitch Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section, Opt. Express, Volume 13 (2005), p. 3037

[17] A. Lupu; E. Cassan; S. Laval; L. El Melhaoui; P. Lyan; J. Fedeli Experimental evidence for superprism phenomena in SOI photonic crystals, Opt. Express, Volume 23 (2004), p. 5690 (See, for example)

[18] T. Karle; Y.J. Chai; C.N. Morgan; I.H. White; T.F. Krauss Observation of pulse compression in photonic crystal coupled cavity waveguides, J. Lightwave Technol., Volume 22 (2004), p. 514

[19] T. Asano; B.-S. Song; Y. Tanaka; S. Noda Investigation of channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab, Appl. Phys. Lett., Volume 83 (2003), p. 407

[20] Y.-H. Lee, et al., in preparation

[21] V.N. Astratov; D.M. Whittaker; L.S. Culshaw; R.M. Stevenson; M.S. Skolnick; T.F. Krauss; R.M. De La Rue Photonic band structure effects in the reflectivity of periodically patterned waveguides, Phys. Rev. B, Volume 60 (1999), p. R16255

[22] S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence, IEE Photon. Technol. Lett., in press

[23] J. Mouette; Ch. Seassal; X. Letartre; P. Rojo-Romeo; J.L.L. Leclercq; Ph. Regreny; P. Viktorovitch; E. Jalaguier; P. Perreau; H. Moriceau Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon, Electron. Lett., Volume 39 (2003), p. 526

[24] F. Raineri; G. Vecchi; Crina Cojocaru; A.M. Yacomotti; C. Seassal; X. Letartre; P. Viktorovitch; R. Raj; A. Levenson Optical amplification in two-dimensional photonic crystals, Appl. Phys. Lett., Volume 86 (2005), p. 091111

[25] Crina Cojocaru; F. Raineri; P. Monnier; C. Seassal; X. Letartre; P. Viktorovitch; A. Levenson; R. Raj Ultrafast nonlinear dynamics of a two-dimensional InP-based photonic crystal response, Appl. Phys. Lett., Volume 85 (2004), p. 1880

[26] B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, Surface emitting microlaser combining 2D photonic membrane and 1D vertical Bragg mirror, Appl. Phys. Lett. (2006), in press

[27] A.M. Yacomotti, B. Ben Bakir, F. Raineri, G. Vecchi, P. Monnier, X. Letartre, C. Seassal, P. Viktorovitch, R. Raj, A. Levenson, All optical bi-stable slow Bloch modes in a two-dimensional photonic crystal, Appl. Phys. Lett. (2006), in press

[28] S. Boutami, B. Ben Bakir, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, Highly selective and compact tunable Fabry-Perot filter associating photonic crystal and MOEMS, Optics Express (2006), in press

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Photonic crystals and metamaterials

Jean-Michel Lourtioz

C. R. Phys (2008)


Two-dimensional photonic crystals: new feasible confined optical systems

Henri Benisty; Maxime Rattier; Ségolène Olivier

C. R. Phys (2002)