[Cristaux photoniques : concepts de base et des composants]
L'art de la microphotonique consiste à confiner les photons, selon une ou plusieurs directions, dans des structures ayant des dimensions de l'ordre de la longueur d'onde et ceci, pour une durée la plus longue possible. L'objectif est alors d'associer ces microstructures afin de réaliser une intégration photonique permettant le traitement de l'information dans des systèmes de faible encombrement en utilisant de faibles puissances optiques. Les cristaux photoniques ont largement démontré ces dernières années leur capacité à atteindre ces objectifs.
The art of microphotonics consists in confining photons, in one or more directions, in structures having dimensions about the wavelength, and doing this for the longest possible duration. The objective is then to associate these microstructures in order to carry out a photonic integration allowing data processing in very compact systems and using low optical powers. Photonic crystals have largely showed these last years their capacity to achieve these goals.
Mot clés : Cristaux photoniques, Microphotonique
Pierre Viktorovitch 1 ; Emmanuel Drouard 1 ; Michel Garrigues 1 ; Jean Louis Leclercq 1 ; Xavier Letartre 1 ; Pedro Rojo Romeo 1 ; Christian Seassal 1
@article{CRPHYS_2007__8_2_253_0, author = {Pierre Viktorovitch and Emmanuel Drouard and Michel Garrigues and Jean Louis Leclercq and Xavier Letartre and Pedro Rojo Romeo and Christian Seassal}, title = {Photonic crystals: basic concepts and devices}, journal = {Comptes Rendus. Physique}, pages = {253--266}, publisher = {Elsevier}, volume = {8}, number = {2}, year = {2007}, doi = {10.1016/j.crhy.2006.04.005}, language = {en}, }
TY - JOUR AU - Pierre Viktorovitch AU - Emmanuel Drouard AU - Michel Garrigues AU - Jean Louis Leclercq AU - Xavier Letartre AU - Pedro Rojo Romeo AU - Christian Seassal TI - Photonic crystals: basic concepts and devices JO - Comptes Rendus. Physique PY - 2007 SP - 253 EP - 266 VL - 8 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2006.04.005 LA - en ID - CRPHYS_2007__8_2_253_0 ER -
%0 Journal Article %A Pierre Viktorovitch %A Emmanuel Drouard %A Michel Garrigues %A Jean Louis Leclercq %A Xavier Letartre %A Pedro Rojo Romeo %A Christian Seassal %T Photonic crystals: basic concepts and devices %J Comptes Rendus. Physique %D 2007 %P 253-266 %V 8 %N 2 %I Elsevier %R 10.1016/j.crhy.2006.04.005 %G en %F CRPHYS_2007__8_2_253_0
Pierre Viktorovitch; Emmanuel Drouard; Michel Garrigues; Jean Louis Leclercq; Xavier Letartre; Pedro Rojo Romeo; Christian Seassal. Photonic crystals: basic concepts and devices. Comptes Rendus. Physique, Volume 8 (2007) no. 2, pp. 253-266. doi : 10.1016/j.crhy.2006.04.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.04.005/
[1] Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. E, Volume 63 (1987), p. 2059
[2] Photonic bandgap structure: the face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett., Volume 67 (1991), p. 2295
[3] Out-of-plane losses of two-dimensional photonic crystals waveguides: Electromagnetic analysis, J. Appl. Phys., Volume 89 (2001) no. 2, pp. 1512-1514
[4] Cristaux Photoniques : de la Microphotonique à la Nanophotonique, La Nanophotonique, Hermès-Lavoisier, 2005 (Chapter 1). English version in press
[5] Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities, IEEE J. Lightwave Technol., Volume 17 (1999), p. 2089 (See, for example)
[6] High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature, Volume 425 (2003), p. 944
[7] Switching devices with spatial and spectral resolution combining Photonic Crystal and MOEMS structures, J. Lightwave Technol., Volume 21 (2003), p. 1691
[8] Strong localisation of photons in certain distordered superlattices, Phys. Rev. Lett., Volume 58 (1987), p. 2486
[9] InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm, Electron. Lett., Volume 37 (2001), p. 764 (See, for example)
[10] Triangular and hexagonal high Q-factor 2D photonic bandgap cavities on III–V suspended membranes, J. Lightwave Technol., Volume 17 (1999), p. 2058
[11] Group velocity and propagation losses measurement in a single line photonic crystal waveguide on InP membranes, Appl. Phys. Lett., Volume 79 (2001), p. 2312
[12] Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides, Opt. Express, Volume 11 (2003), p. 2927
[13] Two-dimensional photonic band-gap defect mode laser, Science, Volume 284 (1999), p. 1819
[14] Channel drop tunneling through localized states, Phys. Rev. Lett., Volume 80 (1998), p. 960 (See also Optical coupling between a two-dimensional photonic crystal-based microcavity and single-line defect waveguide IEEE J. Quant. Electron., 38, 2002, pp. 811)
[15] InP based 2D Photonic Crystal on silicon: in-plane Bloch mode laser, Appl. Phys. Lett., Volume 81 (2002), p. 5102
[16] Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section, Opt. Express, Volume 13 (2005), p. 3037
[17] Experimental evidence for superprism phenomena in SOI photonic crystals, Opt. Express, Volume 23 (2004), p. 5690 (See, for example)
[18] Observation of pulse compression in photonic crystal coupled cavity waveguides, J. Lightwave Technol., Volume 22 (2004), p. 514
[19] Investigation of channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab, Appl. Phys. Lett., Volume 83 (2003), p. 407
[20] Y.-H. Lee, et al., in preparation
[21] Photonic band structure effects in the reflectivity of periodically patterned waveguides, Phys. Rev. B, Volume 60 (1999), p. R16255
[22] S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, P. Viktorovitch, Broadband and compact 2D photonic crystal reflectors with controllable polarization dependence, IEE Photon. Technol. Lett., in press
[23] Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon, Electron. Lett., Volume 39 (2003), p. 526
[24] Optical amplification in two-dimensional photonic crystals, Appl. Phys. Lett., Volume 86 (2005), p. 091111
[25] Ultrafast nonlinear dynamics of a two-dimensional InP-based photonic crystal response, Appl. Phys. Lett., Volume 85 (2004), p. 1880
[26] B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, Surface emitting microlaser combining 2D photonic membrane and 1D vertical Bragg mirror, Appl. Phys. Lett. (2006), in press
[27] A.M. Yacomotti, B. Ben Bakir, F. Raineri, G. Vecchi, P. Monnier, X. Letartre, C. Seassal, P. Viktorovitch, R. Raj, A. Levenson, All optical bi-stable slow Bloch modes in a two-dimensional photonic crystal, Appl. Phys. Lett. (2006), in press
[28] S. Boutami, B. Ben Bakir, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, Highly selective and compact tunable Fabry-Perot filter associating photonic crystal and MOEMS, Optics Express (2006), in press
Cité par Sources :
Commentaires - Politique