[Fonction de réponse dans les matériaux granulaires]
Nous discutons l'intérêt de l'étude de la function de réponse dans les matériaux granulaires, c'est à dire du profil de pression sous une couche de grain soumise à une surcharge localisée à sa surface. Nous présentons d'abord une comparaison quantitative entre la mesure expérimentale de cette fonction avec les prédictions de la théorie élastique isotrope. Nous donnons ensuite une description en termes d'un modèle de chaı̂nes de force.
We discuss the relevance the study of the stress response function in granular materials, i.e. of the stress profile under a layer of grains submitted to a localized force at its top surface. We first present a quantitative comparison between the experimental measure of this function with isotropic elastic predictions. We then give a description in terms of a model of force chains.
Accepté le :
Publié le :
Mots-clés : réponse en contrainte, élasticité, chaı̂nes des force
Jean-Philippe Bouchaud 1 ; Philippe Claudin 2 ; Eric Clément 2 ; Matthias Otto 1 ; Guillaume Reydellet 2
@article{CRPHYS_2002__3_2_141_0, author = {Jean-Philippe Bouchaud and Philippe Claudin and Eric Cl\'ement and Matthias Otto and Guillaume Reydellet}, title = {The stress response function in granular materials}, journal = {Comptes Rendus. Physique}, pages = {141--151}, publisher = {Elsevier}, volume = {3}, number = {2}, year = {2002}, doi = {10.1016/S1631-0705(02)01307-5}, language = {en}, }
TY - JOUR AU - Jean-Philippe Bouchaud AU - Philippe Claudin AU - Eric Clément AU - Matthias Otto AU - Guillaume Reydellet TI - The stress response function in granular materials JO - Comptes Rendus. Physique PY - 2002 SP - 141 EP - 151 VL - 3 IS - 2 PB - Elsevier DO - 10.1016/S1631-0705(02)01307-5 LA - en ID - CRPHYS_2002__3_2_141_0 ER -
%0 Journal Article %A Jean-Philippe Bouchaud %A Philippe Claudin %A Eric Clément %A Matthias Otto %A Guillaume Reydellet %T The stress response function in granular materials %J Comptes Rendus. Physique %D 2002 %P 141-151 %V 3 %N 2 %I Elsevier %R 10.1016/S1631-0705(02)01307-5 %G en %F CRPHYS_2002__3_2_141_0
Jean-Philippe Bouchaud; Philippe Claudin; Eric Clément; Matthias Otto; Guillaume Reydellet. The stress response function in granular materials. Comptes Rendus. Physique, Volume 3 (2002) no. 2, pp. 141-151. doi : 10.1016/S1631-0705(02)01307-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01307-5/
[1] Proc. Powtech. Conference, 1981, Ind. Chem. Eng. Symp., 63 (1981) (D3V 1)
[2] J. Phys. (France) II, 7 (1997), p. 1521
[3] Physics of Dry Granular Media (H.J. Herrmann; J.P. Hovi; S. Luding, eds.), NATO ASI, 25, 1997
[4] Phys. Rev. E, 60 (1999), p. R5040
[5] Physica A, 261 (1998), p. 293
[6] Rev. Mod. Phys., 71 (1999), p. S374
[7] Memory in 2D heap experiments | arXiv
[8] Ann. Ponts Chaussées, 4 (1967), p. 144
[9] Cah. Groupe Fr. Rheol., 2 (1969), p. 73
[10] Mech. Coh. Frict. Mat., 2 (1997), p. 121
[11] Proc. Meeting ‘Powders and Grains’ (Kishino, ed.), Balkema, Lisse, 2001, p. 21
[12] Phys. Rev. Lett., 80 (1998), p. 61
[13] Phys. Rev. E, 57 (1998), p. 3164
[14] Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, Cambridge, 1990
[15] Phys. Rev. Lett., 85 (2000), p. 3628
[16] J. Phys. (France) I, 5 (1995), p. 639
[17] Nature, 382 (1996), p. 336
[18] J. Phys. (France) I, 7 (1997), p. 39
[19] Physics of Dry Granular Media (H.J. Herrmann; J.P. Hovi; S. Luding, eds.), NATO ASI, 97, 1997
[20] Ann. Phys., 24 (1999), p. 1
[21] Statics and Kinematics of Granular Materials, Cambridge University Press, 1992
[22] Phys. Rev. E, 57 (1998), p. 4441
[23] Phys. Rev. Lett., 84 (2000), p. 1439
[24] Phys. Rev. Lett., 81 (1998), p. 1841
[25] Phys. Rev. E, 61 (2000), p. 6802
[26] Phys. Rev. Lett., 81 (1998), p. 1634
[27] Physica A, 249 (1998), p. 226
[28] Phys. Rev. Lett., 82 (1999), p. 5397
[29] Phys. Rev. E, 60 (1999), p. 687
[30] Phys. Rev. E, 62 (2000), p. 2510
[31] Science, 269 (1995), p. 513
[32] Phys. Rev. E, 53 (1996), p. 4673
[33] Phys. Rev. Lett., 86 (2001), p. 3308
[34] Phys. Rev. Lett., 87 (2001), p. 035506
[35] N. Mueggenburg, H. Jaeger, S. Nagel, in preparation
[36] Nature, 406 (2000), p. 70
[37] Proc. Colloque ‘Physique et mécanique des matériaux granulaires’, Champs-sur-Marne, France, 2000, p. 199
[38] D. Bonamy, PhD thesis, in preparation
[39] Robust propagation direction of stresses in a minimal granular packing, Eur. Phys. J. E, Volume 6 (2001), p. 99
[40] J. Phys. I, 7 (1997), p. 1541
[41] L. Breton, P. Claudin, E. Clément, J.-D. Zucker, in preparation
[42] Force chains, microelasticity and macroelasticity | arXiv
[43] Stress response function of a granular layer: quantitative comparison between experiments and isotropic elasticity | arXiv
[44] J. Garnier, Tassement et contraintes. Influence de la rigidité de la fondation et de l'anisotropie du massif, PhD thesis, Université de Grenoble, 1973
[45] , XIIIth Int. Cong. on Rheology, Cambridge, UK, 2, 2000, p. 426
[46] Eur. Phys. J. E, 4 (2001), p. 451
[47] Elasticity theory, Pergamon, New York, 1986
[48] Contact Mechanics, Cambridge University Press, Cambridge, 1985
[49] Phil. Trans. Roy. Soc. London A, 356 (1998), p. 2535
[50] Rev. Mod. Phys., 71 (1999), p. 313
[51] Y. Roichman, D. Levine, Scattering force chains: propagating stress in granular matter, preprint
[52] M. Otto, J.-P. Bouchaud, P. Claudin, I.E.S. Socolar, in preparation
[53] arXiv
|- Granular impacts: how far the Boussinesq model can go?, EPJ Web of Conferences, Volume 249 (2021), p. 03001 | DOI:10.1051/epjconf/202124903001
- Extending the Boussinesq model for impacts in granular media, Granular Matter, Volume 23 (2021) no. 1 | DOI:10.1007/s10035-020-01065-3
- Long-range correlations in pinned athermal networks, Physical Review E, Volume 104 (2021) no. 1 | DOI:10.1103/physreve.104.014503
- Stress response function from Voronoi tessellation of static granular layers, Granular Matter, Volume 22 (2020) no. 3 | DOI:10.1007/s10035-020-01026-w
- Flow dynamics of spherical grains through conical cardboard hoppers, Granular Matter, Volume 21 (2019) no. 2 | DOI:10.1007/s10035-019-0884-8
- Micromechanical origin of angle of repose in granular materials, Granular Matter, Volume 19 (2017) no. 2 | DOI:10.1007/s10035-017-0709-6
- Stress Response of Granular Systems, Journal of Statistical Physics, Volume 169 (2017) no. 1, p. 1 | DOI:10.1007/s10955-017-1857-0
- Effect of variable particle stiffness on force propagation and mechanical response of a composite granular material, The European Physical Journal E, Volume 39 (2016) no. 6 | DOI:10.1140/epje/i2016-16060-3
- Quasi-static response of two-dimensional composite granular layers to a localized force, Powder Technology, Volume 261 (2014), p. 272 | DOI:10.1016/j.powtec.2014.04.032
- The constructal-law origin of the wheel, size, and skeleton in animal design, American Journal of Physics, Volume 78 (2010) no. 7, p. 692 | DOI:10.1119/1.3431988
Cité par 10 documents. Sources : Crossref
Commentaires - Politique