Dans les milieux granulaires, la dissipation conduit à des phénomènes intéressants comme la formation d'amas dans des états dynamiques hors-équilibre. A titre d'exemple, nous examinons la perte d'énergie et l'évolution des amas avec le temps d'un système qui se refroidit librement. De plus, nous analysons la distribution de probabilité de la fréquence de collision. Dans un système homogène, la fréquence de collision d'événements non corrélés conduit à une distribution de Poisson, alors que les phénomènes coopératifs sont caractérisés par une probabilité de collision par unité de temps qui décroı̂t comme une loi de puissance.
In granular media, dissipation leads to interesting phenomena like cluster formation in non-equilibrium dynamical states. As an example, the freely cooling system is examined concerning the energy decay and the cluster evolution with time. Furthermore, the probability distribution of the collision frequency is discussed. Uncorrelated events lead to a Poisson distribution for the collision frequencies in the homogeneous system, whereas cooperative phenomena can be related to a power-law decay of the collision probability per unit time.
Accepté le :
Publié le :
Mots-clés : refroidissement libre et inhomogène, phénomènes coopératifs, dynamique moléculaire gérée par les événements
Stefan Luding 1, 2
@article{CRPHYS_2002__3_2_153_0, author = {Stefan Luding}, title = {Structures and non-equilibrium dynamics in granular media}, journal = {Comptes Rendus. Physique}, pages = {153--161}, publisher = {Elsevier}, volume = {3}, number = {2}, year = {2002}, doi = {10.1016/S1631-0705(02)01308-7}, language = {en}, }
Stefan Luding. Structures and non-equilibrium dynamics in granular media. Comptes Rendus. Physique, Volume 3 (2002) no. 2, pp. 153-161. doi : 10.1016/S1631-0705(02)01308-7. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01308-7/
[1] Physics of Dry Granular Media (H.J. Herrmann; J.-P. Hovi; S. Luding, eds.), NATO ASI Series E, 350, Kluwer, Dordrecht, 1998
[2] Granular Gases (T. Pöschel; S. Luding, eds.), Lecture Notes in Physics, 564, Springer, Berlin, 2001
[3] Continuous and Discontinuous Modelling of Cohesive Frictional Materials (P.A. Vermeer; S. Diebels; W. Ehlers; H.J. Herrmann; S. Luding; E. Ramm, eds.), Lecture Notes in Physics, 568, Springer, Berlin, 2001
[4] Powders and Grains 2001 (Y. Kishino, ed.), Balkema, Rotterdam, 2001
[5] Clustering instability in dissipative gases, Phys. Rev. Lett., Volume 70 (1993) no. 11, pp. 1619-1622
[6] Dynamics of a freely evolving, two-dimensional granular medium, Phys. Rev. E, Volume 53 (1996) no. 5, pp. 5089-5100
[7] Cluster growth in freely cooling granular media, Chaos, Volume 9 (1999) no. 3, pp. 673-681
[8] Two-dimensional granular gas of inelastic spheres with multiplicative driving, Phys. Rev. Lett., Volume 84 (2000), pp. 6014-6017
[9] Surface waves and pattern formation in vibrated granular media, Powders and Grains, 97, Balkema, Amsterdam, 1997, pp. 373-376
[10] Simulations of dense granular flow: Dynamic arches and spin organization, J. Phys. I (France), Volume 6 (1996), pp. 823-836
[11] How to simulate billards and similar systems, J. Comput. Phys., Volume 94 (1991) no. 2, p. 255
[12] Granular materials under vibration: Simulations of rotating spheres, Phys. Rev. E, Volume 52 (1995) no. 4, p. 4442
[13] A discrete numerical model for granular assemblies, Géotechnique, Volume 29 (1979) no. 1, pp. 47-65
[14] Computer Simulation of Liquids, Oxford University Press, Oxford, 1987
[15] Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell, Granular Matter, Volume 2 (2000) no. 3, pp. 123-135 | arXiv
[16] Collisions and contacts between two particles (H.J. Herrmann; J.-P. Hovi; S. Luding, eds.), Physics of Dry Granular Media, NATO ASI Series E, 350, Kluwer, Dordrecht, 1998, p. 285
[17] How to handle the inelastic collapse of a dissipative hard-sphere gas with the TC model, Granular Matter, Volume 1 (1998) no. 3, pp. 113-128 | arXiv
[18] Anomalous energy dissipation in molecular dynamics simulations of grains: The “detachment effect”, Phys. Rev. E, Volume 50 (1994), p. 4113
[19] Interaction laws and the detachment effect in granular media, Fractal Aspects of Materials, Symposium Proceedings, 367, Materials Research Society, Pittsburgh, Pennsylvania, 1995, pp. 495-500
[20] Grain flow as a fluid-mechanical phenomenon, J. Fluid Mech., Volume 134 (1983), pp. 401-430
[21] Homogeneous cooling of rough dissipative particles: Theory and simulations, Phys. Rev. E, Volume 58 (1998), pp. 3416-3425
Cité par Sources :
Commentaires - Politique