[Nanomémoires adressables en ADN ?]
Il est possible de concevoir des courtes séquences d'ADN simple-brin présentant plusieurs structures secondaires stables (> heures). En principe, de telles molécules pourraient être utilisées comme des nanomémoires si elles pouvaient être facilement passées d'un état piégé à un autre. Nous proposons ici que le travail nécessaire pour placer la molécule dans un état piégé particulier peut être fourni par sa propre synthèse. Prolongeant cette idée, nous montrons qu'une faible tension (<1 V) pourrait induire le basculement structural d'une molécule bistable à volonté, en la forçant à passer au travers d'un nanopore et à se replier alternativement ensuite à partir de l'une ou l'autre extrémité.
Short single-stranded DNA (or RNA) molecules can be designed to have several long lived (> hours) secondary structures. In principle, such molecules could be used as nanomemories if they could be easily induced to switch between trapped states. We propose here that the necessary work required to drive the molecule into one particular trapped state can be provided by its own synthesis. Following this idea, we argue that a low voltage (<1 V) may induce a bistable DNA molecule to switch structure at will, by forcing it to thread through a nanopore and refold alternatively from either of its ends.
Révisé le :
Publié le :
Mots-clés : nanomémoire, nanopore, synthèse de l'ADN
Hervé Isambert 1
@article{CRPHYS_2002__3_3_391_0, author = {Herv\'e Isambert}, title = {Voltage addressable nanomemories in {DNA?}}, journal = {Comptes Rendus. Physique}, pages = {391--396}, publisher = {Elsevier}, volume = {3}, number = {3}, year = {2002}, doi = {10.1016/S1631-0705(02)01315-4}, language = {en}, }
Hervé Isambert. Voltage addressable nanomemories in DNA?. Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 391-396. doi : 10.1016/S1631-0705(02)01315-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01315-4/
[1] Assembling nanocircuits from the bottom up (New focus), Science, Volume 293 (2001), pp. 782-785
[2] A [2]Catenane-based solid state electronically reconfigurable switch, Science, Volume 289 (2000), pp. 1172-1175
[3] Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle, Science, Volume 291 (2001), pp. 2124-2128
[4] A light-driven linear motor at the molecular level, Science, Volume 291 (2001), pp. 2105-2106 (and references therein)
[5] Kinetics of conformational fluctuations in DNA hairpin-loops, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 8602-8606
[6] In vitro recombination and terminal elongation of RNA by Qβ replicase, EMBO J., Volume 11 (1992), pp. 5129-5135
[7] A. Xayaphoummine, H. Isambert, in preparation
[8] A DNA-fuelled molecular machine made of DNA, Nature, Volume 406 (2000), pp. 605-608
[9] Pathway modulation, circular permutation and rapid RNA folding under kinetic control, J. Mol. Biol., Volume 286 (1999), pp. 721-731
[10] Modeling RNA folding paths with pseudoknots: Application to hepatitis delta virus ribozyme, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), pp. 6515-6520
[11] Mechanical separation of the complementary strands of DNA, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), pp. 11935-11940
[12] Reversible unfolding of single RNA molecules by mechanical force, Science, Volume 292 (2001), pp. 733-737
[13] Phys. Rev. Lett., 76 (1996), pp. 3858-3861
[14] Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA, Volume 93 (1996), pp. 13770-13773
[15] Voltage-driven DNA translocations through a nanopore, Phys. Rev. Lett., Volume 86 (2001) no. 15, pp. 3435-3438
[16] Driven polymer translocation through a narrow pore, Biophys. J., Volume 77 (1999), pp. 1824-1838
[17] A. Meller, private communication
Cité par Sources :
Commentaires - Politique