Comptes Rendus
Biophysique à l'échelle de la molécule unique/Single molecule biophysics
Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping
[Modélisation théorique des expériences de molécules uniques sur l'ADN et l'ARN : de l'élasticité au dégraffage des bases]
Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 569-584.

Les travaux théoriques portant sur les expériences sur molécules uniques sont ici passés en revue. Tout d'abord, nous introduisons les modèles simples de polymères élastiques. Ensuite, nous expliquons comment ces modèles peuvent être utilisés pour interpréter les mesures de force-extension effectuées sur une molécule unique d'ADN (simple brin ou double brin), mesures qui mettent en évidence tantôt le caractère élastique de cette molécule, tantôt des transitions structurelles brutales. Dans une troisième partie, nous montrons qu'en associant les propriétes élastiques des brins d'acides nucléiques à une description de leurs interactions d'appariement, l'essentiel de la phénomènologie et de la cinétique de dégraffage de l'ARN et l'ADN peut être expliqué.

We review statistical-mechanical theories of single-molecule micromanipulation experiments on nucleic acids. Firstly, models for describing polymer elasticity are introduced. We then review how these models are used to interpret single-molecule force-extension experiments on single-stranded and double-stranded DNA. Depending on the force and the molecules used, both smooth elastic behavior and abrupt structural transitions are observed. Thirdly, we show how combining the elasticity of two single nucleic acid strands with a description of the base-pairing interactions between them explains much of the phenomenology and kinetics of RNA and DNA ‘unzipping’ experiments.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(02)01345-2
Keywords: micromanipulation, polymer elasticity, DNA, RNAs
Mots-clés : micromanipulation, élasticité des polymères, ADN, ARNs

Simona Cocco 1 ; John F. Marko 2 ; Rémi Monasson 3

1 CNRS–Laboratoire de dynamique des fluides complexes, 3, rue de l'Université, 67000 Strasbourg, France
2 Department of Physics, The University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA
3 CNRS–Laboratoire de physique théorique de l'ENS, 24, rue Lhomond, 75005 Paris, France
@article{CRPHYS_2002__3_5_569_0,
     author = {Simona Cocco and John F. Marko and R\'emi Monasson},
     title = {Theoretical models for single-molecule {DNA} and {RNA} experiments: from elasticity to unzipping},
     journal = {Comptes Rendus. Physique},
     pages = {569--584},
     publisher = {Elsevier},
     volume = {3},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01345-2},
     language = {en},
}
TY  - JOUR
AU  - Simona Cocco
AU  - John F. Marko
AU  - Rémi Monasson
TI  - Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 569
EP  - 584
VL  - 3
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01345-2
LA  - en
ID  - CRPHYS_2002__3_5_569_0
ER  - 
%0 Journal Article
%A Simona Cocco
%A John F. Marko
%A Rémi Monasson
%T Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping
%J Comptes Rendus. Physique
%D 2002
%P 569-584
%V 3
%N 5
%I Elsevier
%R 10.1016/S1631-0705(02)01345-2
%G en
%F CRPHYS_2002__3_5_569_0
Simona Cocco; John F. Marko; Rémi Monasson. Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping. Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 569-584. doi : 10.1016/S1631-0705(02)01345-2. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01345-2/

[1] P.J. Flory Statistical Mechanics of Chain Molecules, Hanser, Munich, 1989

[2] M. Doy; S.F. Edwards The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986

[3] C. Bustamante; J.F. Marko; E.D. Siggia; S. Smith Entropic elasticity of lambda-phage DNA, Science, Volume 265 (1994), p. 1599

[4] J.F. Marko; E.D. Siggia Stretching DNA, Macromolecules, Volume 28 (1995), p. 209

[5] R.H. Austin; J.P. Brody; E.C. Cox; T. Duke; W. Volkmuth Stretch genes, Phys. Today, Volume 50 (1997), p. 32

[6] C. Bustamante; S.B. Smith; J. Liphardt; D. Smith Single-molecule studies of DNA mechanics, Curr. Opin. Struct. Biol., Volume 10 (2000), p. 279

[7] M.D. Wang; H. Yin; R. Landick; J. Gelles; S. Block Stretching DNA with optical tweezers, Biophys. J., Volume 72 (1997), p. 1335

[8] T. Strick; J.F. Allemand; V. Croquette; D. Bensimon Twisting and stretching single DNA molecules, Progr. Biophys. Mol. Biol., Volume 74 (2000), p. 115

[9] P. Cluzel; A. Lebrun; C. Heller; R. Lavery; J.L. Viovy; D. Chatenay; F. Caron DNA: An extensible molecule, Science, Volume 271 (1996), p. 792

[10] T.R. Strick; J.F. Allemand; D. Bensimon; V. Croquette Behavior of supercoiled DNA, Biophys. J., Volume 74 (1998), p. 2016

[11] C. Bouchiat; M.D. Wang; J.F. Allemand; T. Strick; S.M. Block; V. Croquette Estimating the persistence length of a worm-like chain molecule from force extension measurements, Biophys. J., Volume 76 (1999), p. 409

[12] S. Smith; Y. Cui; C. Bustamante Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science, Volume 271 (1996), p. 795

[13] J.L. Barrat; J.F. Joanny Persistence length of polyelectrolytes chains, Europhys. Lett., Volume 24 (1993), p. 333

[14] C.G. Baumann; S.B. Smith; V.A. Bloomfield; C. Bustamante Ionic effects on the elasticity of single DNA molecules, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), p. 6185

[15] J. Marko, M. Feig, B.M. Pettitt, Unification of the microscopic atomic fluctuations with mesoscopic elasticity of the DNA double helix, preprint, 2001

[16] S. Cocco; R. Monasson Theoretical study of collective modes in DNA at ambient temperature, J. Chem. Phys., Volume 112 (2000), p. 10017

[17] S.B. Smith; L. Finzi; C. Bustamante Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, Volume 258 (1992), p. 1122

[18] A. Lebrun; R. Lavery Modelling extreme deformations of DNA, Nucl. Acids Res., Volume 24 (1996), p. 2260

[19] P. Cizeau; J.L. Viovy Modelling extreme extension of DNA, Biopolymers, Volume 42 (1997), pp. 383-385

[20] T.L. Hill J. Chem. Phys., 30 (1959), p. 383

[21] B. Zimm; J. Bragg J. Chem. Phys., 31 (1959), p. 526

[22] Y. Kafri; D. Mukamel; L. Peliti Why is the DNA denaturation transition first order?, Phys. Rev. Lett., Volume 85 (2000), p. 4988

[23] I. Rouzina; V.A. Bloomfield Force-induced melting of the DNA double helix, Biophys. J., Volume 80 (2001), pp. 882-893

[24] J.F. Marko DNA under high tension: overstretching, undertwisting, and relaxation dynamics, Phys. Rev. E, Volume 57 (1998), p. 2134

[25] T.R. Strick; J.-F. Allemand; D. Bensimon; A. Bensimon; V. Croquette The elasticity of a single supercoiled DNA molecule, Science, Volume 271 (1996), p. 1835

[26] J.-F. Léger; G. Romano; A. Sarkar; J. Robert; L. Bourdieu; D. Chatenay; J.F. Marko Structural transitions of a twisted and stretched DNA molecule, Phys. Rev. Lett., Volume 83 (1999), p. 1066

[27] J.F. Allemand; D. Bensimon; R. Lavery; V. Croquette Stretched and overwound DNA forms a Pauling-like structure with exposed bases, Proc. Natl. Acad. Sci. USA, Volume 74 (1998), p. 2016

[28] J.F. Marko; E.D. Siggia Statistical mechanics of supercoiled DNA, Phys. Rev. E, Volume 52 (1995), p. 2912

[29] J.F. Marko Supercoiled and braided DNA under tension, Phys. Rev. E, Volume 55 (1997), p. 1758

[30] S. Cocco; R. Monasson Statistical mechanics of torque induced denaturation of DNA, Phys. Rev. Lett., Volume 83 (1999), p. 5178

[31] A. Sarkar; J.-F. Léger; D. Chatenay; J.F. Marko Structural transitions in DNA driven by external force and torque, Phys. Rev. E, Volume 63 (2001), p. 051903

[32] B. Fain; J. Rudnick; S. Ostlund Conformations of linear DNA, Phys. Rev. E, Volume 55 (1997), p. 7364

[33] J.D. Moroz; P. Nelson Torsional directed walks, entropic elasticity, and DNA twist stiffness, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), p. 1441

[34] C. Bouchiat; M. Mézard Elasticity model of a supercoiled DNA molecule, Phys. Rev. Lett., Volume 80 (1998), p. 1556

[35] M.N. Dessinges, B. Maier, M. Peliti, D. Bensimon, V. Croquette, Stretching single stranded DNA, a real self avoiding and interacting heteropolymer, preprint, 2001

[36] Y. Zhang; H. Zhou; Z.C. Ou-Yang Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions, Biophys. J., Volume 81 (2001), p. 1133

[37] S. Cocco, R. Monasson, J. Yan, A. Sarkar, J.F. Marko, Elastic response of folding polymers, preprint, 2002

[38] C. Bouchiat, Hartree–Fock computation of self avoiding flexible polymer elasticity, preprint, 2001

[39] B. Maier; D. Bensimon; V. Croquette Replication by a single DNA-polymerase of a stretched single strand DNA, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), p. 12002

[40] A. Montanari; M. Mezard Hairpin formation and elongation of biomolecules, Phys. Rev. Lett., Volume 86 (2001), p. 2178

[41] R. Bundschuh; T. Hwa Statistical mechanics of secondary structures fromed by random RNA sequences, Phys. Rev. E, Volume 65 (2002), p. 031903

[42] A. Pagnani; G. Parisi; F. Ricci-Tersenghi Glassy transition in a disordered model for the RNA secondary structure, Phys. Rev. Lett., Volume 84 (2000), p. 2026

[43] H. Isambert; E.D. Siggia Modeling RNA folding paths with pseudoknots: Application to hepatitis delta virus ribozyme, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), p. 6515

[44] Y. Cui; C. Bustamante Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), pp. 127-132

[45] J.F. Marko; E.D. Siggia Driving proteins off DNA using applied tension, Biophys. J., Volume 73 (1997), p. 2173

[46] B. Essevaz-Roulet; U. Bockelmann; F. Heslot Mechanical separation of the complementary strands of DNA, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), p. 11935

[47] K. Breslauer; R. Frank; H. Blocker; L.A. Marky Predicting DNA duplex stability from the base sequence, Proc. Natl. Acad. Sci. USA, Volume 83 (1986), p. 3746

[48] U. Bockelmann; P. Thomen; B. Essevaz-Roulet; V. Viasnoff; F. Heslot Unzipping DNA with optical tweezers: high sequence sensitivity and force flips, Biophys J., Volume 82 (2002), pp. 1537-1553

[49] M. Rief; H. Clausen-Schaumann; H.E. Gaub Sequence-dependent mechanics of single DNA molecules, Nat. Struct. Biol., Volume 6 (1999), p. 346

[50] D.K. Lubensky; D.R. Nelson Pulling pinned polymers and unzipping DNA, Phys. Rev. Lett., Volume 85 (2000), p. 1572

[51] D.K. Lubensky; D.R. Nelson Single molecule statistics and the polynucleotide unzipping transition, Phys. Rev. E, Volume 65 (2002), p. 031917

[52] S. Cocco; R. Monasson; J.F. Marko Force and kinetic barriers to unzipping of the DNA double helix, Proc. Natl. Aca. Sci. USA, Volume 98 (2001), pp. 8608-8613

[53] M. Zuker Calculating nucleic acid secondary structure, Curr. Opin. Struct. Biol., Volume 10 (2000), pp. 303-310

[54] J. Liphardt; B. Onoa; S.B. Smith; I. Tinoco; C. Bustamante Reversible unfolding of single RNA molecules by mechanical force, Science, Volume 292 (2001), pp. 733-737

[55] E.R. Thompson; E.D. Siggia Physical limits on the mechanical measurement of the secondary structure of bio-molecules, Europhys. Lett., Volume 31 (1995), pp. 335-340

[56] U. Bockelmann; B. Essevaz-Roulet; F. Heslot DNA strand separation studied by single molecule force measurements, Phys. Rev. E, Volume 58 (1998), p. 2386

[57] S. Cocco; R. Monasson; J.F. Marko Force and kinetic barriers to initiation of DNA unzipping, Phys. Rev. E, Volume 65 (2002), p. 041907

[58] J.S. Langer Statistical theory of the decay of metastable states, Ann. Phys. (NY), Volume 54 (1967), pp. 258-275

[59] E. Evans; K. Ritchie Dynamic strength of molecular adhesion bonds, Biophys. J., Volume 72 (1997), pp. 1541-1555

[60] S. Cocco, J.F. Marko, R. Monasson, Slow nucleic acid unzipping kinetics from sequence-defined barriers, preprint, 2002

  • Benjamin R. Gilbert; Zaida Luthey-Schulten Replicating Chromosomes in Whole-Cell Models of Bacteria, Bacterial Chromatin, Volume 2819 (2024), p. 625 | DOI:10.1007/978-1-0716-3930-6_29
  • Hashem Moosavian; Tian Tang A multiscale mechanics model for disordered biopolymer gels containing junction zones with variable length, Journal of the Mechanics and Physics of Solids, Volume 192 (2024), p. 105792 | DOI:10.1016/j.jmps.2024.105792
  • Mingyuan Cui; Jianping Zhou; Kai Li; Yan Xu Force-extension and longitudinal response of wormlike chains with single cross-link, Physica Scripta, Volume 99 (2024) no. 11, p. 115022 | DOI:10.1088/1402-4896/ad8404
  • Peter Werner; Alexander K. Hartmann; Satya N. Majumdar Work distribution for unzipping processes, Physical Review E, Volume 110 (2024) no. 2 | DOI:10.1103/physreve.110.024115
  • Matti Már; Kateryna Nitsenko; Pétur O. Heidarsson Multifunctional Intrinsically Disordered Regions in Transcription Factors, Chemistry – A European Journal, Volume 29 (2023) no. 21 | DOI:10.1002/chem.202203369
  • Benjamin R. Gilbert; Zane R. Thornburg; Troy A. Brier; Jan A. Stevens; Fabian Grünewald; John E. Stone; Siewert J. Marrink; Zaida Luthey-Schulten Dynamics of chromosome organization in a minimal bacterial cell, Frontiers in Cell and Developmental Biology, Volume 11 (2023) | DOI:10.3389/fcell.2023.1214962
  • Mahmudur Rahman; Kazi Rafiqul Islam; Md. Rashedul Islam; Md. Jahirul Islam; Md. Rejvi Kaysir; Masuma Akter; Md. Arifur Rahman; S. M. Mahfuz Alam A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices, Micromachines, Volume 13 (2022) no. 6, p. 968 | DOI:10.3390/mi13060968
  • Zhi Zhao; Xiahui Chen; Jiawei Zuo; Ali Basiri; Shinhyuk Choi; Yu Yao; Yan Liu; Chao Wang Deterministic assembly of single emitters in sub-5 nanometer optical cavity formed by gold nanorod dimers on three-dimensional DNA origami, Nano Research, Volume 15 (2022) no. 2, p. 1327 | DOI:10.1007/s12274-021-3661-z
  • Alexander Zolochevsky; Sophia Parkhomenko; Alexander Martynenko Quantum, molecular and continuum modeling in nonlinear mechanics of viruses, The Journal of V. N. Karazin Kharkiv National University, Series "Medicine" (2022) no. 44, p. 5 | DOI:10.26565/2313-6693-2022-44-01
  • Sadegh Dastorani; Reza Hasanzadeh Ghasemi; Reza Soheilifard A Study on the Bending Stiffness of a New DNA Origami Nano-Joint, Molecular Biotechnology, Volume 63 (2021) no. 11, p. 1057 | DOI:10.1007/s12033-021-00367-y
  • Feng Zhou; Wei Sun; Chen Zhang; Jie Shen; Peng Yin; Haitao Liu 3D Freestanding DNA Nanostructure Hybrid as a Low-Density High-Strength Material, ACS Nano, Volume 14 (2020) no. 6, p. 6582 | DOI:10.1021/acsnano.0c00178
  • Shivangi Sharma; Parbati Biswas Conformational transitions of a DNA hairpin through transition path times, Journal of Statistical Mechanics: Theory and Experiment, Volume 2020 (2020) no. 7, p. 073411 | DOI:10.1088/1742-5468/aba0a7
  • O. I. Volokh; G. A. Armeev; E. S. Trifonova; O. S. Sokolova Investigation of the Effect of a Single-Stranded Break on the Mechanical Parameters of DNA by Molecular Dynamics Method, Moscow University Biological Sciences Bulletin, Volume 75 (2020) no. 3, p. 136 | DOI:10.3103/s0096392520030098
  • Christopher Maffeo; Aleksei Aksimentiev MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems, Nucleic Acids Research, Volume 48 (2020) no. 9, p. 5135 | DOI:10.1093/nar/gkaa200
  • Mobin Marvi; Majid Ghadiri RETRACTED ARTICLE: A Mathematical Model for Vibration Behavior Analysis of DNA and Using a Resonant Frequency of DNA for Genome Engineering, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-60105-3
  • Cheng-Tai Lee; Eugene M. Terentjev Hard-wall entropic effect accelerates detachment of adsorbed polymer chains, Physical Review E, Volume 100 (2019) no. 3 | DOI:10.1103/physreve.100.032501
  • Rohit R. Singh; James W. Dunn; Motamed M. Qadan; Nakiuda Hall; Kathy K. Wang; Douglas D. Root Whole length myosin binding protein C stabilizes myosin S2 as measured by gravitational force spectroscopy, Archives of Biochemistry and Biophysics, Volume 638 (2018), p. 41 | DOI:10.1016/j.abb.2017.12.002
  • , 2017 | DOI:10.12794/metadc1062860
  • L. Mónica Bravo-Anaya; E. Rebeca Macías; J. Humberto Pérez-López; Hélène Galliard; Denis C. D. Roux; Gabriel Landazuri; Francisco Carvajal Ramos; Marguerite Rinaudo; Frédéric Pignon; J. F. Armando Soltero Supramolecular Organization in Calf-Thymus DNA Solutions under Flow in Dependence with DNA Concentration, Macromolecules, Volume 50 (2017) no. 20, p. 8245 | DOI:10.1021/acs.macromol.7b01174
  • Marian Mankos; Henrik H. J. Persson; Alpha T. N’Diaye; Khashayar Shadman; Andreas K. Schmid; Ronald W. Davis; Yuriy Dedkov Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy, PLOS ONE, Volume 11 (2016) no. 5, p. e0154707 | DOI:10.1371/journal.pone.0154707
  • Sanjeev K. Gupta; Andrew McEwan; Igor Lukačević Elasticity of DNA nanowires, Physics Letters A, Volume 380 (2016) no. 1-2, p. 207 | DOI:10.1016/j.physleta.2015.09.038
  • Zhipeng Ma; Young-Joo Kim; Seongsu Park; Yoshikazu Hirai; Toshiyuki Tsuchiya; Do-Nyum Kim; Osamu Tabata, 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2015), p. 581 | DOI:10.1109/nems.2015.7147496
  • O. I. Volokh; M. E. Bozdaganyan; K. V. Shaitan Assessment of the DNA-binding properties of actinomycin and its derivatives by molecular dynamics simulation, Biophysics, Volume 60 (2015) no. 6, p. 893 | DOI:10.1134/s0006350915060275
  • Carlo Barbieri; Simona Cocco; Thomas Jorg; Rémi Monasson Reconstruction and Identification of DNA Sequence Landscapes from Unzipping Experiments at Equilibrium, Biophysical Journal, Volume 106 (2014) no. 2, p. 430 | DOI:10.1016/j.bpj.2013.11.4496
  • Raghvendra Pratap Singh; Ralf Blossey; Fabrizio Cleri Structure and Mechanical Characterization of DNA i-Motif Nanowires by Molecular Dynamics Simulation, Biophysical Journal, Volume 105 (2013) no. 12, p. 2820 | DOI:10.1016/j.bpj.2013.10.021
  • Maria Barbi; Fabien Paillusson Protein–DNA Electrostatics, Dynamics of Proteins and Nucleic Acids, Volume 92 (2013), p. 253 | DOI:10.1016/b978-0-12-411636-8.00007-9
  • H. Xiao DNA elastic nonlinearities as multiple smooth combinations of soft and hard linear springs, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 93 (2013) no. 1, p. 50 | DOI:10.1002/zamm.201200093
  • Carsten Svaneborg LAMMPS framework for dynamic bonding and an application modeling DNA, Computer Physics Communications, Volume 183 (2012) no. 8, p. 1793 | DOI:10.1016/j.cpc.2012.03.005
  • Gerhard A. Holzapfel; Ray W. Ogden On the Bending and Stretching Elasticity of Biopolymer Filaments, Journal of Elasticity, Volume 104 (2011) no. 1-2, p. 319 | DOI:10.1007/s10659-010-9277-2
  • T. R. Einert; H. Orland; R. R. Netz Secondary structure formation of homopolymeric single-stranded nucleic acids including force and loop entropy: Implications for DNA hybridization, The European Physical Journal E, Volume 34 (2011) no. 6 | DOI:10.1140/epje/i2011-11055-2
  • Thomas R. Einert; Douglas B. Staple; Hans-Jürgen Kreuzer; Roland R. Netz A Three-State Model with Loop Entropy for the Overstretching Transition of DNA, Biophysical Journal, Volume 99 (2010) no. 2, p. 578 | DOI:10.1016/j.bpj.2010.04.046
  • Gerhard A. Holzapfel; Ray W. Ogden On the Bending and Stretching Elasticity of Biopolymer Filaments, Methods and Tastes in Modern Continuum Mechanics (2010), p. 319 | DOI:10.1007/978-94-007-1884-5_21
  • Tetsuya Hiraiwa; Takao Ohta Viscoelasticity of a Single Semiflexible Polymer Chain, Macromolecules, Volume 42 (2009) no. 19, p. 7553 | DOI:10.1021/ma901098c
  • Tetsuya Hiraiwa; Takao Ohta Viscoelastic Behavior of a Single Semiflexible Polymer Chain, Journal of the Physical Society of Japan, Volume 77 (2008) no. 2, p. 023001 | DOI:10.1143/jpsj.77.023001
  • Felix Ritort Nonequilibrium Fluctuations in Small Systems: From Physics to Biology, Advances in Chemical Physics, Volume 137 (2007), p. 31 | DOI:10.1002/9780470238080.ch2
  • V. Baldazzi; S. Bradde; S. Cocco; E. Marinari; R. Monasson Inferring DNA sequences from mechanical unzipping data: the large-bandwidth case, Physical Review E, Volume 75 (2007) no. 1 | DOI:10.1103/physreve.75.011904
  • C. Danilowicz; C. H. Lee; V. W. Coljee; M. Prentiss Effects of temperature on the mechanical properties of single stranded DNA, Physical Review E, Volume 75 (2007) no. 3 | DOI:10.1103/physreve.75.030902
  • Seth Blumberg; Matthew W. Pennington; Jens-Christian Meiners Do Femtonewton Forces Affect Genetic Function? A Review, Journal of Biological Physics, Volume 32 (2006) no. 2, p. 73 | DOI:10.1007/s10867-005-9002-8
  • Q. Zhu; J. Zeng; M.S. Triantafyllou; D.K.P. Yue Direct Numerical Simulation of Single-Molecule DNA by Cable Dynamics, Journal of Microelectromechanical Systems, Volume 15 (2006) no. 5, p. 1078 | DOI:10.1109/jmems.2006.880238
  • Erik Van der Straeten; Jan Naudts A one-dimensional model for theoretical analysis of single molecule experiments, Journal of Physics A: Mathematical and General, Volume 39 (2006) no. 20, p. 5715 | DOI:10.1088/0305-4470/39/20/006
  • F Ritort Single-molecule experiments in biological physics: methods and applications, Journal of Physics: Condensed Matter, Volume 18 (2006) no. 32, p. R531 | DOI:10.1088/0953-8984/18/32/r01
  • V. Baldazzi; S. Cocco; E. Marinari; R. Monasson Inference of DNA Sequences from Mechanical Unzipping: An Ideal-Case Study, Physical Review Letters, Volume 96 (2006) no. 12 | DOI:10.1103/physrevlett.96.128102
  • A. Rosa; T.X. Hoang; D. Marenduzzo; A. Maritan A new interpolation formula for semiflexible polymers, Biophysical Chemistry, Volume 115 (2005) no. 2-3, p. 251 | DOI:10.1016/j.bpc.2004.12.030
  • Ashok Prasad; Yuko Hori; Jané Kondev Elasticity of semiflexible polymers in two dimensions, Physical Review E, Volume 72 (2005) no. 4 | DOI:10.1103/physreve.72.041918
  • Sarah Anne Harris The physics of DNA stretching, Contemporary Physics, Volume 45 (2004) no. 1, p. 11 | DOI:10.1080/00107510310001624478
  • A. Rosa; T. X. Hoang; D. Marenduzzo; A. Maritan Elasticity of Semiflexible Polymers with and without Self-Interactions, Macromolecules, Volume 36 (2003) no. 26, p. 10095 | DOI:10.1021/ma0348831
  • P. Leoni; C. Vanderzande Statistical mechanics of RNA folding: A lattice approach, Physical Review E, Volume 68 (2003) no. 5 | DOI:10.1103/physreve.68.051904

Cité par 47 documents. Sources : Crossref

Commentaires - Politique