[Modélisation théorique des expériences de molécules uniques sur l'ADN et l'ARN : de l'élasticité au dégraffage des bases]
Les travaux théoriques portant sur les expériences sur molécules uniques sont ici passés en revue. Tout d'abord, nous introduisons les modèles simples de polymères élastiques. Ensuite, nous expliquons comment ces modèles peuvent être utilisés pour interpréter les mesures de force-extension effectuées sur une molécule unique d'ADN (simple brin ou double brin), mesures qui mettent en évidence tantôt le caractère élastique de cette molécule, tantôt des transitions structurelles brutales. Dans une troisième partie, nous montrons qu'en associant les propriétes élastiques des brins d'acides nucléiques à une description de leurs interactions d'appariement, l'essentiel de la phénomènologie et de la cinétique de dégraffage de l'ARN et l'ADN peut être expliqué.
We review statistical-mechanical theories of single-molecule micromanipulation experiments on nucleic acids. Firstly, models for describing polymer elasticity are introduced. We then review how these models are used to interpret single-molecule force-extension experiments on single-stranded and double-stranded DNA. Depending on the force and the molecules used, both smooth elastic behavior and abrupt structural transitions are observed. Thirdly, we show how combining the elasticity of two single nucleic acid strands with a description of the base-pairing interactions between them explains much of the phenomenology and kinetics of RNA and DNA ‘unzipping’ experiments.
Accepté le :
Publié le :
Mots-clés : micromanipulation, élasticité des polymères, ADN, ARNs
Simona Cocco 1 ; John F. Marko 2 ; Rémi Monasson 3
@article{CRPHYS_2002__3_5_569_0, author = {Simona Cocco and John F. Marko and R\'emi Monasson}, title = {Theoretical models for single-molecule {DNA} and {RNA} experiments: from elasticity to unzipping}, journal = {Comptes Rendus. Physique}, pages = {569--584}, publisher = {Elsevier}, volume = {3}, number = {5}, year = {2002}, doi = {10.1016/S1631-0705(02)01345-2}, language = {en}, }
TY - JOUR AU - Simona Cocco AU - John F. Marko AU - Rémi Monasson TI - Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping JO - Comptes Rendus. Physique PY - 2002 SP - 569 EP - 584 VL - 3 IS - 5 PB - Elsevier DO - 10.1016/S1631-0705(02)01345-2 LA - en ID - CRPHYS_2002__3_5_569_0 ER -
Simona Cocco; John F. Marko; Rémi Monasson. Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping. Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 569-584. doi : 10.1016/S1631-0705(02)01345-2. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01345-2/
[1] Statistical Mechanics of Chain Molecules, Hanser, Munich, 1989
[2] The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986
[3] Entropic elasticity of lambda-phage DNA, Science, Volume 265 (1994), p. 1599
[4] Stretching DNA, Macromolecules, Volume 28 (1995), p. 209
[5] Stretch genes, Phys. Today, Volume 50 (1997), p. 32
[6] Single-molecule studies of DNA mechanics, Curr. Opin. Struct. Biol., Volume 10 (2000), p. 279
[7] Stretching DNA with optical tweezers, Biophys. J., Volume 72 (1997), p. 1335
[8] Twisting and stretching single DNA molecules, Progr. Biophys. Mol. Biol., Volume 74 (2000), p. 115
[9] DNA: An extensible molecule, Science, Volume 271 (1996), p. 792
[10] Behavior of supercoiled DNA, Biophys. J., Volume 74 (1998), p. 2016
[11] Estimating the persistence length of a worm-like chain molecule from force extension measurements, Biophys. J., Volume 76 (1999), p. 409
[12] Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science, Volume 271 (1996), p. 795
[13] Persistence length of polyelectrolytes chains, Europhys. Lett., Volume 24 (1993), p. 333
[14] Ionic effects on the elasticity of single DNA molecules, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), p. 6185
[15] J. Marko, M. Feig, B.M. Pettitt, Unification of the microscopic atomic fluctuations with mesoscopic elasticity of the DNA double helix, preprint, 2001
[16] Theoretical study of collective modes in DNA at ambient temperature, J. Chem. Phys., Volume 112 (2000), p. 10017
[17] Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, Volume 258 (1992), p. 1122
[18] Modelling extreme deformations of DNA, Nucl. Acids Res., Volume 24 (1996), p. 2260
[19] Modelling extreme extension of DNA, Biopolymers, Volume 42 (1997), pp. 383-385
[20] J. Chem. Phys., 30 (1959), p. 383
[21] J. Chem. Phys., 31 (1959), p. 526
[22] Why is the DNA denaturation transition first order?, Phys. Rev. Lett., Volume 85 (2000), p. 4988
[23] Force-induced melting of the DNA double helix, Biophys. J., Volume 80 (2001), pp. 882-893
[24] DNA under high tension: overstretching, undertwisting, and relaxation dynamics, Phys. Rev. E, Volume 57 (1998), p. 2134
[25] The elasticity of a single supercoiled DNA molecule, Science, Volume 271 (1996), p. 1835
[26] Structural transitions of a twisted and stretched DNA molecule, Phys. Rev. Lett., Volume 83 (1999), p. 1066
[27] Stretched and overwound DNA forms a Pauling-like structure with exposed bases, Proc. Natl. Acad. Sci. USA, Volume 74 (1998), p. 2016
[28] Statistical mechanics of supercoiled DNA, Phys. Rev. E, Volume 52 (1995), p. 2912
[29] Supercoiled and braided DNA under tension, Phys. Rev. E, Volume 55 (1997), p. 1758
[30] Statistical mechanics of torque induced denaturation of DNA, Phys. Rev. Lett., Volume 83 (1999), p. 5178
[31] Structural transitions in DNA driven by external force and torque, Phys. Rev. E, Volume 63 (2001), p. 051903
[32] Conformations of linear DNA, Phys. Rev. E, Volume 55 (1997), p. 7364
[33] Torsional directed walks, entropic elasticity, and DNA twist stiffness, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), p. 1441
[34] Elasticity model of a supercoiled DNA molecule, Phys. Rev. Lett., Volume 80 (1998), p. 1556
[35] M.N. Dessinges, B. Maier, M. Peliti, D. Bensimon, V. Croquette, Stretching single stranded DNA, a real self avoiding and interacting heteropolymer, preprint, 2001
[36] Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions, Biophys. J., Volume 81 (2001), p. 1133
[37] S. Cocco, R. Monasson, J. Yan, A. Sarkar, J.F. Marko, Elastic response of folding polymers, preprint, 2002
[38] C. Bouchiat, Hartree–Fock computation of self avoiding flexible polymer elasticity, preprint, 2001
[39] Replication by a single DNA-polymerase of a stretched single strand DNA, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), p. 12002
[40] Hairpin formation and elongation of biomolecules, Phys. Rev. Lett., Volume 86 (2001), p. 2178
[41] Statistical mechanics of secondary structures fromed by random RNA sequences, Phys. Rev. E, Volume 65 (2002), p. 031903
[42] Glassy transition in a disordered model for the RNA secondary structure, Phys. Rev. Lett., Volume 84 (2000), p. 2026
[43] Modeling RNA folding paths with pseudoknots: Application to hepatitis delta virus ribozyme, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), p. 6515
[44] Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), pp. 127-132
[45] Driving proteins off DNA using applied tension, Biophys. J., Volume 73 (1997), p. 2173
[46] Mechanical separation of the complementary strands of DNA, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), p. 11935
[47] Predicting DNA duplex stability from the base sequence, Proc. Natl. Acad. Sci. USA, Volume 83 (1986), p. 3746
[48] Unzipping DNA with optical tweezers: high sequence sensitivity and force flips, Biophys J., Volume 82 (2002), pp. 1537-1553
[49] Sequence-dependent mechanics of single DNA molecules, Nat. Struct. Biol., Volume 6 (1999), p. 346
[50] Pulling pinned polymers and unzipping DNA, Phys. Rev. Lett., Volume 85 (2000), p. 1572
[51] Single molecule statistics and the polynucleotide unzipping transition, Phys. Rev. E, Volume 65 (2002), p. 031917
[52] Force and kinetic barriers to unzipping of the DNA double helix, Proc. Natl. Aca. Sci. USA, Volume 98 (2001), pp. 8608-8613
[53] Calculating nucleic acid secondary structure, Curr. Opin. Struct. Biol., Volume 10 (2000), pp. 303-310
[54] Reversible unfolding of single RNA molecules by mechanical force, Science, Volume 292 (2001), pp. 733-737
[55] Physical limits on the mechanical measurement of the secondary structure of bio-molecules, Europhys. Lett., Volume 31 (1995), pp. 335-340
[56] DNA strand separation studied by single molecule force measurements, Phys. Rev. E, Volume 58 (1998), p. 2386
[57] Force and kinetic barriers to initiation of DNA unzipping, Phys. Rev. E, Volume 65 (2002), p. 041907
[58] Statistical theory of the decay of metastable states, Ann. Phys. (NY), Volume 54 (1967), pp. 258-275
[59] Dynamic strength of molecular adhesion bonds, Biophys. J., Volume 72 (1997), pp. 1541-1555
[60] S. Cocco, J.F. Marko, R. Monasson, Slow nucleic acid unzipping kinetics from sequence-defined barriers, preprint, 2002
- Replicating Chromosomes in Whole-Cell Models of Bacteria, Bacterial Chromatin, Volume 2819 (2024), p. 625 | DOI:10.1007/978-1-0716-3930-6_29
- A multiscale mechanics model for disordered biopolymer gels containing junction zones with variable length, Journal of the Mechanics and Physics of Solids, Volume 192 (2024), p. 105792 | DOI:10.1016/j.jmps.2024.105792
- Force-extension and longitudinal response of wormlike chains with single cross-link, Physica Scripta, Volume 99 (2024) no. 11, p. 115022 | DOI:10.1088/1402-4896/ad8404
- Work distribution for unzipping processes, Physical Review E, Volume 110 (2024) no. 2 | DOI:10.1103/physreve.110.024115
- Multifunctional Intrinsically Disordered Regions in Transcription Factors, Chemistry – A European Journal, Volume 29 (2023) no. 21 | DOI:10.1002/chem.202203369
- Dynamics of chromosome organization in a minimal bacterial cell, Frontiers in Cell and Developmental Biology, Volume 11 (2023) | DOI:10.3389/fcell.2023.1214962
- A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices, Micromachines, Volume 13 (2022) no. 6, p. 968 | DOI:10.3390/mi13060968
- Deterministic assembly of single emitters in sub-5 nanometer optical cavity formed by gold nanorod dimers on three-dimensional DNA origami, Nano Research, Volume 15 (2022) no. 2, p. 1327 | DOI:10.1007/s12274-021-3661-z
- Quantum, molecular and continuum modeling in nonlinear mechanics of viruses, The Journal of V. N. Karazin Kharkiv National University, Series "Medicine" (2022) no. 44, p. 5 | DOI:10.26565/2313-6693-2022-44-01
- A Study on the Bending Stiffness of a New DNA Origami Nano-Joint, Molecular Biotechnology, Volume 63 (2021) no. 11, p. 1057 | DOI:10.1007/s12033-021-00367-y
- 3D Freestanding DNA Nanostructure Hybrid as a Low-Density High-Strength Material, ACS Nano, Volume 14 (2020) no. 6, p. 6582 | DOI:10.1021/acsnano.0c00178
- Conformational transitions of a DNA hairpin through transition path times, Journal of Statistical Mechanics: Theory and Experiment, Volume 2020 (2020) no. 7, p. 073411 | DOI:10.1088/1742-5468/aba0a7
- Investigation of the Effect of a Single-Stranded Break on the Mechanical Parameters of DNA by Molecular Dynamics Method, Moscow University Biological Sciences Bulletin, Volume 75 (2020) no. 3, p. 136 | DOI:10.3103/s0096392520030098
- MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems, Nucleic Acids Research, Volume 48 (2020) no. 9, p. 5135 | DOI:10.1093/nar/gkaa200
- RETRACTED ARTICLE: A Mathematical Model for Vibration Behavior Analysis of DNA and Using a Resonant Frequency of DNA for Genome Engineering, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-60105-3
- Hard-wall entropic effect accelerates detachment of adsorbed polymer chains, Physical Review E, Volume 100 (2019) no. 3 | DOI:10.1103/physreve.100.032501
- Whole length myosin binding protein C stabilizes myosin S2 as measured by gravitational force spectroscopy, Archives of Biochemistry and Biophysics, Volume 638 (2018), p. 41 | DOI:10.1016/j.abb.2017.12.002
- , 2017 | DOI:10.12794/metadc1062860
- Supramolecular Organization in Calf-Thymus DNA Solutions under Flow in Dependence with DNA Concentration, Macromolecules, Volume 50 (2017) no. 20, p. 8245 | DOI:10.1021/acs.macromol.7b01174
- Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy, PLOS ONE, Volume 11 (2016) no. 5, p. e0154707 | DOI:10.1371/journal.pone.0154707
- Elasticity of DNA nanowires, Physics Letters A, Volume 380 (2016) no. 1-2, p. 207 | DOI:10.1016/j.physleta.2015.09.038
- , 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2015), p. 581 | DOI:10.1109/nems.2015.7147496
- Assessment of the DNA-binding properties of actinomycin and its derivatives by molecular dynamics simulation, Biophysics, Volume 60 (2015) no. 6, p. 893 | DOI:10.1134/s0006350915060275
- Reconstruction and Identification of DNA Sequence Landscapes from Unzipping Experiments at Equilibrium, Biophysical Journal, Volume 106 (2014) no. 2, p. 430 | DOI:10.1016/j.bpj.2013.11.4496
- Structure and Mechanical Characterization of DNA i-Motif Nanowires by Molecular Dynamics Simulation, Biophysical Journal, Volume 105 (2013) no. 12, p. 2820 | DOI:10.1016/j.bpj.2013.10.021
- Protein–DNA Electrostatics, Dynamics of Proteins and Nucleic Acids, Volume 92 (2013), p. 253 | DOI:10.1016/b978-0-12-411636-8.00007-9
- DNA elastic nonlinearities as multiple smooth combinations of soft and hard linear springs, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 93 (2013) no. 1, p. 50 | DOI:10.1002/zamm.201200093
- LAMMPS framework for dynamic bonding and an application modeling DNA, Computer Physics Communications, Volume 183 (2012) no. 8, p. 1793 | DOI:10.1016/j.cpc.2012.03.005
- On the Bending and Stretching Elasticity of Biopolymer Filaments, Journal of Elasticity, Volume 104 (2011) no. 1-2, p. 319 | DOI:10.1007/s10659-010-9277-2
- Secondary structure formation of homopolymeric single-stranded nucleic acids including force and loop entropy: Implications for DNA hybridization, The European Physical Journal E, Volume 34 (2011) no. 6 | DOI:10.1140/epje/i2011-11055-2
- A Three-State Model with Loop Entropy for the Overstretching Transition of DNA, Biophysical Journal, Volume 99 (2010) no. 2, p. 578 | DOI:10.1016/j.bpj.2010.04.046
- On the Bending and Stretching Elasticity of Biopolymer Filaments, Methods and Tastes in Modern Continuum Mechanics (2010), p. 319 | DOI:10.1007/978-94-007-1884-5_21
- Viscoelasticity of a Single Semiflexible Polymer Chain, Macromolecules, Volume 42 (2009) no. 19, p. 7553 | DOI:10.1021/ma901098c
- Viscoelastic Behavior of a Single Semiflexible Polymer Chain, Journal of the Physical Society of Japan, Volume 77 (2008) no. 2, p. 023001 | DOI:10.1143/jpsj.77.023001
- Nonequilibrium Fluctuations in Small Systems: From Physics to Biology, Advances in Chemical Physics, Volume 137 (2007), p. 31 | DOI:10.1002/9780470238080.ch2
- Inferring DNA sequences from mechanical unzipping data: the large-bandwidth case, Physical Review E, Volume 75 (2007) no. 1 | DOI:10.1103/physreve.75.011904
- Effects of temperature on the mechanical properties of single stranded DNA, Physical Review E, Volume 75 (2007) no. 3 | DOI:10.1103/physreve.75.030902
- Do Femtonewton Forces Affect Genetic Function? A Review, Journal of Biological Physics, Volume 32 (2006) no. 2, p. 73 | DOI:10.1007/s10867-005-9002-8
- Direct Numerical Simulation of Single-Molecule DNA by Cable Dynamics, Journal of Microelectromechanical Systems, Volume 15 (2006) no. 5, p. 1078 | DOI:10.1109/jmems.2006.880238
- A one-dimensional model for theoretical analysis of single molecule experiments, Journal of Physics A: Mathematical and General, Volume 39 (2006) no. 20, p. 5715 | DOI:10.1088/0305-4470/39/20/006
- Single-molecule experiments in biological physics: methods and applications, Journal of Physics: Condensed Matter, Volume 18 (2006) no. 32, p. R531 | DOI:10.1088/0953-8984/18/32/r01
- Inference of DNA Sequences from Mechanical Unzipping: An Ideal-Case Study, Physical Review Letters, Volume 96 (2006) no. 12 | DOI:10.1103/physrevlett.96.128102
- A new interpolation formula for semiflexible polymers, Biophysical Chemistry, Volume 115 (2005) no. 2-3, p. 251 | DOI:10.1016/j.bpc.2004.12.030
- Elasticity of semiflexible polymers in two dimensions, Physical Review E, Volume 72 (2005) no. 4 | DOI:10.1103/physreve.72.041918
- The physics of DNA stretching, Contemporary Physics, Volume 45 (2004) no. 1, p. 11 | DOI:10.1080/00107510310001624478
- Elasticity of Semiflexible Polymers with and without Self-Interactions, Macromolecules, Volume 36 (2003) no. 26, p. 10095 | DOI:10.1021/ma0348831
- Statistical mechanics of RNA folding: A lattice approach, Physical Review E, Volume 68 (2003) no. 5 | DOI:10.1103/physreve.68.051904
Cité par 47 documents. Sources : Crossref
Commentaires - Politique