[Modélisation théorique des expériences de molécules uniques sur l'ADN et l'ARN : de l'élasticité au dégraffage des bases]
Les travaux théoriques portant sur les expériences sur molécules uniques sont ici passés en revue. Tout d'abord, nous introduisons les modèles simples de polymères élastiques. Ensuite, nous expliquons comment ces modèles peuvent être utilisés pour interpréter les mesures de force-extension effectuées sur une molécule unique d'ADN (simple brin ou double brin), mesures qui mettent en évidence tantôt le caractère élastique de cette molécule, tantôt des transitions structurelles brutales. Dans une troisième partie, nous montrons qu'en associant les propriétes élastiques des brins d'acides nucléiques à une description de leurs interactions d'appariement, l'essentiel de la phénomènologie et de la cinétique de dégraffage de l'ARN et l'ADN peut être expliqué.
We review statistical-mechanical theories of single-molecule micromanipulation experiments on nucleic acids. Firstly, models for describing polymer elasticity are introduced. We then review how these models are used to interpret single-molecule force-extension experiments on single-stranded and double-stranded DNA. Depending on the force and the molecules used, both smooth elastic behavior and abrupt structural transitions are observed. Thirdly, we show how combining the elasticity of two single nucleic acid strands with a description of the base-pairing interactions between them explains much of the phenomenology and kinetics of RNA and DNA ‘unzipping’ experiments.
Accepté le :
Publié le :
Mots-clés : micromanipulation, élasticité des polymères, ADN, ARNs
Simona Cocco 1 ; John F. Marko 2 ; Rémi Monasson 3
@article{CRPHYS_2002__3_5_569_0, author = {Simona Cocco and John F. Marko and R\'emi Monasson}, title = {Theoretical models for single-molecule {DNA} and {RNA} experiments: from elasticity to unzipping}, journal = {Comptes Rendus. Physique}, pages = {569--584}, publisher = {Elsevier}, volume = {3}, number = {5}, year = {2002}, doi = {10.1016/S1631-0705(02)01345-2}, language = {en}, }
TY - JOUR AU - Simona Cocco AU - John F. Marko AU - Rémi Monasson TI - Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping JO - Comptes Rendus. Physique PY - 2002 SP - 569 EP - 584 VL - 3 IS - 5 PB - Elsevier DO - 10.1016/S1631-0705(02)01345-2 LA - en ID - CRPHYS_2002__3_5_569_0 ER -
Simona Cocco; John F. Marko; Rémi Monasson. Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping. Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 569-584. doi : 10.1016/S1631-0705(02)01345-2. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01345-2/
[1] Statistical Mechanics of Chain Molecules, Hanser, Munich, 1989
[2] The Theory of Polymer Dynamics, Oxford University Press, Oxford, 1986
[3] Entropic elasticity of lambda-phage DNA, Science, Volume 265 (1994), p. 1599
[4] Stretching DNA, Macromolecules, Volume 28 (1995), p. 209
[5] Stretch genes, Phys. Today, Volume 50 (1997), p. 32
[6] Single-molecule studies of DNA mechanics, Curr. Opin. Struct. Biol., Volume 10 (2000), p. 279
[7] Stretching DNA with optical tweezers, Biophys. J., Volume 72 (1997), p. 1335
[8] Twisting and stretching single DNA molecules, Progr. Biophys. Mol. Biol., Volume 74 (2000), p. 115
[9] DNA: An extensible molecule, Science, Volume 271 (1996), p. 792
[10] Behavior of supercoiled DNA, Biophys. J., Volume 74 (1998), p. 2016
[11] Estimating the persistence length of a worm-like chain molecule from force extension measurements, Biophys. J., Volume 76 (1999), p. 409
[12] Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules, Science, Volume 271 (1996), p. 795
[13] Persistence length of polyelectrolytes chains, Europhys. Lett., Volume 24 (1993), p. 333
[14] Ionic effects on the elasticity of single DNA molecules, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), p. 6185
[15] J. Marko, M. Feig, B.M. Pettitt, Unification of the microscopic atomic fluctuations with mesoscopic elasticity of the DNA double helix, preprint, 2001
[16] Theoretical study of collective modes in DNA at ambient temperature, J. Chem. Phys., Volume 112 (2000), p. 10017
[17] Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, Volume 258 (1992), p. 1122
[18] Modelling extreme deformations of DNA, Nucl. Acids Res., Volume 24 (1996), p. 2260
[19] Modelling extreme extension of DNA, Biopolymers, Volume 42 (1997), pp. 383-385
[20] J. Chem. Phys., 30 (1959), p. 383
[21] J. Chem. Phys., 31 (1959), p. 526
[22] Why is the DNA denaturation transition first order?, Phys. Rev. Lett., Volume 85 (2000), p. 4988
[23] Force-induced melting of the DNA double helix, Biophys. J., Volume 80 (2001), pp. 882-893
[24] DNA under high tension: overstretching, undertwisting, and relaxation dynamics, Phys. Rev. E, Volume 57 (1998), p. 2134
[25] The elasticity of a single supercoiled DNA molecule, Science, Volume 271 (1996), p. 1835
[26] Structural transitions of a twisted and stretched DNA molecule, Phys. Rev. Lett., Volume 83 (1999), p. 1066
[27] Stretched and overwound DNA forms a Pauling-like structure with exposed bases, Proc. Natl. Acad. Sci. USA, Volume 74 (1998), p. 2016
[28] Statistical mechanics of supercoiled DNA, Phys. Rev. E, Volume 52 (1995), p. 2912
[29] Supercoiled and braided DNA under tension, Phys. Rev. E, Volume 55 (1997), p. 1758
[30] Statistical mechanics of torque induced denaturation of DNA, Phys. Rev. Lett., Volume 83 (1999), p. 5178
[31] Structural transitions in DNA driven by external force and torque, Phys. Rev. E, Volume 63 (2001), p. 051903
[32] Conformations of linear DNA, Phys. Rev. E, Volume 55 (1997), p. 7364
[33] Torsional directed walks, entropic elasticity, and DNA twist stiffness, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), p. 1441
[34] Elasticity model of a supercoiled DNA molecule, Phys. Rev. Lett., Volume 80 (1998), p. 1556
[35] M.N. Dessinges, B. Maier, M. Peliti, D. Bensimon, V. Croquette, Stretching single stranded DNA, a real self avoiding and interacting heteropolymer, preprint, 2001
[36] Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions, Biophys. J., Volume 81 (2001), p. 1133
[37] S. Cocco, R. Monasson, J. Yan, A. Sarkar, J.F. Marko, Elastic response of folding polymers, preprint, 2002
[38] C. Bouchiat, Hartree–Fock computation of self avoiding flexible polymer elasticity, preprint, 2001
[39] Replication by a single DNA-polymerase of a stretched single strand DNA, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), p. 12002
[40] Hairpin formation and elongation of biomolecules, Phys. Rev. Lett., Volume 86 (2001), p. 2178
[41] Statistical mechanics of secondary structures fromed by random RNA sequences, Phys. Rev. E, Volume 65 (2002), p. 031903
[42] Glassy transition in a disordered model for the RNA secondary structure, Phys. Rev. Lett., Volume 84 (2000), p. 2026
[43] Modeling RNA folding paths with pseudoknots: Application to hepatitis delta virus ribozyme, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), p. 6515
[44] Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), pp. 127-132
[45] Driving proteins off DNA using applied tension, Biophys. J., Volume 73 (1997), p. 2173
[46] Mechanical separation of the complementary strands of DNA, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), p. 11935
[47] Predicting DNA duplex stability from the base sequence, Proc. Natl. Acad. Sci. USA, Volume 83 (1986), p. 3746
[48] Unzipping DNA with optical tweezers: high sequence sensitivity and force flips, Biophys J., Volume 82 (2002), pp. 1537-1553
[49] Sequence-dependent mechanics of single DNA molecules, Nat. Struct. Biol., Volume 6 (1999), p. 346
[50] Pulling pinned polymers and unzipping DNA, Phys. Rev. Lett., Volume 85 (2000), p. 1572
[51] Single molecule statistics and the polynucleotide unzipping transition, Phys. Rev. E, Volume 65 (2002), p. 031917
[52] Force and kinetic barriers to unzipping of the DNA double helix, Proc. Natl. Aca. Sci. USA, Volume 98 (2001), pp. 8608-8613
[53] Calculating nucleic acid secondary structure, Curr. Opin. Struct. Biol., Volume 10 (2000), pp. 303-310
[54] Reversible unfolding of single RNA molecules by mechanical force, Science, Volume 292 (2001), pp. 733-737
[55] Physical limits on the mechanical measurement of the secondary structure of bio-molecules, Europhys. Lett., Volume 31 (1995), pp. 335-340
[56] DNA strand separation studied by single molecule force measurements, Phys. Rev. E, Volume 58 (1998), p. 2386
[57] Force and kinetic barriers to initiation of DNA unzipping, Phys. Rev. E, Volume 65 (2002), p. 041907
[58] Statistical theory of the decay of metastable states, Ann. Phys. (NY), Volume 54 (1967), pp. 258-275
[59] Dynamic strength of molecular adhesion bonds, Biophys. J., Volume 72 (1997), pp. 1541-1555
[60] S. Cocco, J.F. Marko, R. Monasson, Slow nucleic acid unzipping kinetics from sequence-defined barriers, preprint, 2002
Cité par Sources :
Commentaires - Politique