[Nouvelles techniques d'imagerie multiphonique : vers une nouvelle génération de marqueurs moléculaires]
Les nouvelles techniques d'imagerie multiphotonique telles que la microscopie de génération de deuxième harmonique (SHG) et ou de fluorescence induite par excitation à deux photons (TPEF) connaissent à l'heure actuelle un véritable essor, de part les nombreux multiples avantages qu'elles offrent pour l'imagerie du vivant. Le développement de ces techniques passe par l'ingénierie de marqueurs moléculaires adaptés. Cette approche est illustrée par le design de chromophores et fluorophores membranaires optimisés pour l'imagerie SHG et/ou TPEF des membranes cellulaires. Au-delà d'une imagerie structurale, de tels marqueurs ouvrent également la voie à une véritable imagerie fonctionnelle.
Novel microscopies based on nonlinear optical (NLO) phenomena such as two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) have gained overwhelming popularity in the biology community owing to the many advantages they provide in biological imaging. Examples of molecular engineering approaches toward NLO-probes specifically designed for SHG and/or TPEF imaging of lipid membranes and biological cells are given here, providing an illustration of their intriguing potential in the area of real-time, non-damaging imaging of biological structures. Optimized NLO-markers open new routes for improved monitoring and better understanding of fundamental dynamic processes.
Publié le :
Mots-clés : chromophores, fluorophores, absorption biphotonique, TPEF, SHG, sondes moléculaires, membranes cellulaires
Mireille Blanchard-Desce 1
@article{CRPHYS_2002__3_4_439_0, author = {Mireille Blanchard-Desce}, title = {Molecular engineering of {NLO-phores} for new {NLO} microscopies}, journal = {Comptes Rendus. Physique}, pages = {439--448}, publisher = {Elsevier}, volume = {3}, number = {4}, year = {2002}, doi = {10.1016/S1631-0705(02)01329-4}, language = {en}, }
Mireille Blanchard-Desce. Molecular engineering of NLO-phores for new NLO microscopies. Comptes Rendus. Physique, Volume 3 (2002) no. 4, pp. 439-448. doi : 10.1016/S1631-0705(02)01329-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01329-4/
[1] Chem. Phys., 245 (1999)
[2] Science, 288 (2000), p. 119
[3] Nature, 398 (1999), pp. 51-54
[4] Science, 245 (1989), pp. 843-845
[5] Opt. Lett., 20 (1995), pp. 435-437
[6] Opt. Lett., 22 (1997), pp. 1843-1845
[7] Nature, 398 (1999), pp. 51-54
[8] C. R. Acad. Sci. Ser. IV, 2 (2001), pp. 1153-1160
[9] Science, 248 (1990), pp. 73-76
[10] Science, 275 (1997), pp. 530-532
[11] Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 10763-10768
[12] Nonlinear Optics, World Scientific, 1965
[13] Opt. Lett., 23 (1998), p. 1209
[14] Opt. Lett., 22 (1997), p. 1323
[15] Chem. Phys., 245 (1999), pp. 133-144
[16] Biophys. J., 7 (1999), pp. 3341-3349
[17] J. Microscopy, 191 (1998), p. 266
[18] Opt. Express, 5 (1999), p. 169
[19] Opt. Lett., 25 (2000), pp. 320-322
[20] J. Opt. Soc. Am. B, 17 (2000), pp. 1685-1694
[21] Biophys. J., 80 (2001), pp. 1568-1574
[22] Chem. Mater., 12 (2000), pp. 2838-2841
[23] Opt. Lett., 26 (2001), pp. 1081-1083
[24] J. Phys. Chem. B, 103 (1999), pp. 10741-10745
[25] J. Opt. Soc. Am. B, 14 (1997), p. 1079
[26] Chem. Phys. Lett., 298 (1998), pp. 1-6
[27] Science, 281 (1998), pp. 1653-1656
[28] J. Am. Chem. Soc., 122 (2000), pp. 9500-9510
[29] J. Phys. Chem., 113 (2000), pp. 3951-3959
[30] J. Phys. Chem. A, 104 (2000), pp. 11033-11040
[31] Chem. Commun. (1999), pp. 2055-2056
[32] Synth. Met., 127 (2002), pp. 17-21
[33] Nonlinear Opt., 27 (2001), pp. 249-258
[34] Angew. Chem. Int. Ed. Engl., 40 (2001), pp. 2098-2101
[35] Org. Lett., 4 (2002), pp. 719-722
[36] J. Opt. Soc. Am. B, 13 (1996), pp. 481-491
[37] , Proc. SPIE, 4461, 2001, pp. 20-32
[38] Chem. Eur. J., 3 (1997), pp. 1091-1104
[39] Adv. Mater., 11 (1999), pp. 1210-1214
[40] Science (1996), pp. 335-337
[41] Science, 288 (2000), p. 119
[42] Chem. Commun. (2000), pp. 353-354
[43] Biochemistry, 24 (1985), pp. 5749-5755
[44] Biophys. J., 65 (1993), pp. 672-679
[45] Biophys. J., 71 (1996), pp. 1616-1620
[46] L. Moreaux, T. Pons, V. Dambrin, M. Blanchard-Desce, J. Mertz, submitted
- Two-photon absorption of BODIPY, BIDIPY, GADIPY, and SBDIPY, Physical Chemistry Chemical Physics, Volume 27 (2025) no. 7, p. 3873 | DOI:10.1039/d4cp03915g
- ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS, Handbook of Solvents, Volume 1 (2024), p. 791 | DOI:10.1016/b978-1-77467-040-8.50013-x
- Tailoring the donor moieties in TPA‐based organic dyes for efficient photovoltaic, optical and nonlinear optical response properties, International Journal of Quantum Chemistry, Volume 124 (2024) no. 7 | DOI:10.1002/qua.27362
- Non-Degenerate Two-Photon Absorption of Fluorescent Protein Chromophores, The Journal of Physical Chemistry A, Volume 128 (2024) no. 36, p. 7511 | DOI:10.1021/acs.jpca.3c08402
- Degenerate and non-degenerate two-photon absorption of coumarin dyes, Physical Chemistry Chemical Physics, Volume 25 (2023) no. 25, p. 16772 | DOI:10.1039/d3cp00723e
- Observation of up-conversion fluorescence from exciplex of m-MTDATA:TPBi blend, Journal of Luminescence, Volume 243 (2022), p. 118655 | DOI:10.1016/j.jlumin.2021.118655
- How do structural factors determine the linear and non-linear optical properties of fluorene-containing quadrupolar fluorophores? A theoretical answer, New Journal of Chemistry, Volume 46 (2022) no. 28, p. 13431 | DOI:10.1039/d2nj01192a
- ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS, Handbook of Solvents (2019), p. 691 | DOI:10.1016/b978-1-927885-38-3.50012-7
- Ligand-Core NLO-Phores, Molecular Spectroscopy—Experiment and Theory, Volume 26 (2019), p. 139 | DOI:10.1007/978-3-030-01355-4_5
- Linear and Nonlinear Optical Properties of Tricyanopropylidene‐Based Merocyanine Dyes: Synergistic Experimental and Theoretical Investigations, ChemPhysChem, Volume 19 (2018) no. 2, p. 187 | DOI:10.1002/cphc.201701143
- Atomically precise clusters of gold and silver: A new class of nonlinear optical nanomaterials, Frontier Research Today, Volume 1 (2018), p. 1001 | DOI:10.31716/frt.201801001
- Mesoporous Silica-Based Nanoparticles for Light-Actuated Biomedical Applications via Near-Infrared Two-Photon Absorption, Mesoporous Silica-based Nanomaterials and Biomedical Applications, Part A, Volume 43 (2018), p. 67 | DOI:10.1016/bs.enz.2018.07.004
- Fluorescent phenanthroimidazoles functionalized with heterocyclic spacers: synthesis, optical chemosensory ability and two-photon absorption (TPA) properties, New J. Chem., Volume 41 (2017) no. 21, p. 12866 | DOI:10.1039/c7nj02113e
- Synthesis, Fluorescence, and Two‐Photon Absorption Properties of Push–Pull 5‐Arylthieno[3,2‐b]thiophene Derivatives, European Journal of Organic Chemistry, Volume 2016 (2016) no. 31, p. 5263 | DOI:10.1002/ejoc.201600806
- Non-linear optical, electrochemical and spectroelectrochemical properties of amphiphilic inner salt porphyrinic systems, Journal of Porphyrins and Phthalocyanines, Volume 20 (2016) no. 08n11, p. 1002 | DOI:10.1142/s1088424616500425
- pKa tuning in quadrupolar-type two-photon ratiometric fluorescent membrane probes, Chemical Communications, Volume 51 (2015) no. 83, p. 15245 | DOI:10.1039/c5cc04573h
- Combination of Cyanine Behaviour and Giant Hyperpolarisability in Novel Merocyanine Dyes: Beyond the Bond Length Alternation (BLA) Paradigm, Chemistry – A European Journal, Volume 21 (2015) no. 40, p. 14211 | DOI:10.1002/chem.201501800
- Self-Assembled Organic Nanocrystals with Strong Nonlinear Optical Response, Nano Letters, Volume 15 (2015) no. 11, p. 7232 | DOI:10.1021/acs.nanolett.5b02010
- ELECTRONIC AND ELECTRICAL EFFECTS OF SOLVENTS, Handbook of Solvents (2014), p. 649 | DOI:10.1016/b978-1-895198-64-5.50018-0
- Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR, Nanoscale, Volume 6 (2014) no. 9, p. 4652 | DOI:10.1039/c3nr06155h
- V‐shaped, Strongly‐emitting, π‐Expanded Hydrophilic Azacyanines: Synthesis, Linear and Nonlinear Optical Properties, Asian Journal of Organic Chemistry, Volume 2 (2013) no. 8, p. 669 | DOI:10.1002/ajoc.201300107
- Two‐Photon Polarity Probes Built from Octupolar Fluorophores: Synthesis, Structure–Properties Relationships, and Use in Cellular Imaging, Chemistry – An Asian Journal, Volume 8 (2013) no. 12, p. 2984 | DOI:10.1002/asia.201300735
- Nonlinear Optical Chemosensor for Sodium Ion Based on Rhodol Chromophore, The Journal of Organic Chemistry, Volume 78 (2013) no. 23, p. 11721 | DOI:10.1021/jo401653t
- Design, Synthesis, and Structural and Spectroscopic Studies of Push–Pull Two-Photon Absorbing Chromophores with Acceptor Groups of Varying Strength, The Journal of Organic Chemistry, Volume 78 (2013) no. 3, p. 1014 | DOI:10.1021/jo302423p
- Fluorescence and two-photon absorption of push—pull aryl(bi)thiophenes: structure—property relationships, Photochemical Photobiological Sciences, Volume 11 (2012) no. 11, p. 1756 | DOI:10.1039/c2pp25258a
- Comparison of Staining Selectivity for Subcellular Structures by Carbazole‐Based Cyanine Probes in Nonlinear Optical Microscopy, ChemBioChem, Volume 12 (2011) no. 1, p. 52 | DOI:10.1002/cbic.201000593
- Banana-shaped biphotonic quadrupolar chromophores: from fluorophores to biphotonic photosensitizers, New Journal of Chemistry, Volume 35 (2011) no. 9, p. 1771 | DOI:10.1039/c1nj20073a
- Incorporation of pyridazine rings in the structure of functionalized π-conjugated materials, RSC Advances, Volume 1 (2011) no. 3, p. 364 | DOI:10.1039/c1ra00207d
- Tailored merocyaninedyes for solution-processed BHJ solar cells, J. Mater. Chem., Volume 20 (2010) no. 2, p. 240 | DOI:10.1039/b916181c
- Dyes for biological second harmonic generation imaging, Physical Chemistry Chemical Physics, Volume 12 (2010) no. 41, p. 13484 | DOI:10.1039/c003720f
- Enhanced Two‐Photon Absorption of Organic Chromophores: Theoretical and Experimental Assessments, Advanced Materials, Volume 20 (2008) no. 24, p. 4641 | DOI:10.1002/adma.200800402
- Bulk heterojunction organic solar cells based on merocyanine colorants, Chemical Communications (2008) no. 48, p. 6489 | DOI:10.1039/b813341g
- Synthesis and Characterization of Fluorescently Doped Mesoporous Nanoparticles for Two-Photon Excitation, Chemistry of Materials, Volume 20 (2008) no. 6, p. 2174 | DOI:10.1021/cm703487b
- Novel 5-(oligofluorenyl)-1,10-phenanthroline type ligands: synthesis, linear and two-photon absorption properties, Tetrahedron Letters, Volume 49 (2008) no. 11, p. 1753 | DOI:10.1016/j.tetlet.2008.01.080
- Synthesis, Fluorescence, and Two‐Photon Absorption of a Series of Elongated Rodlike and Banana‐Shaped Quadrupolar Fluorophores: A Comprehensive Study of Structure–Property Relationships, Chemistry – A European Journal, Volume 13 (2007) no. 5, p. 1481 | DOI:10.1002/chem.200600689
- Acetylene-Substituted Two-Photon Absorbing Molecules With Rigid Elongated Pi-Conjugation: Synthesis, Spectroscopic Properties and Two-Photon Fluorescence Cell Imaging Applications, Journal of Fluorescence, Volume 17 (2007) no. 5, p. 573 | DOI:10.1007/s10895-007-0219-8
- Novel pyrimidine-based amphiphilic molecules: synthesis, spectroscopic properties and applications in two-photon fluorescence microscopic imaging, Journal of Materials Chemistry, Volume 17 (2007) no. 28, p. 2921 | DOI:10.1039/b702004j
- Water‐Soluble Dendrimeric Two‐Photon Tracers for In Vivo Imaging, Angewandte Chemie, Volume 118 (2006) no. 28, p. 4761 | DOI:10.1002/ange.200601246
- Water‐Soluble Dendrimeric Two‐Photon Tracers for In Vivo Imaging, Angewandte Chemie International Edition, Volume 45 (2006) no. 28, p. 4645 | DOI:10.1002/anie.200601246
- Linear and Two‐Photon Absorption Properties of Interacting Polar Chromophores: Standard and Unconventional Effects, ChemPhysChem, Volume 7 (2006) no. 3, p. 685 | DOI:10.1002/cphc.200500536
- Effects of Dipolar Interactions on Linear and Nonlinear Optical Properties of Multichromophore Assemblies: A Case Study, Chemistry – A European Journal, Volume 12 (2006) no. 11, p. 3089 | DOI:10.1002/chem.200500910
- One-, two- and three-photon spectroscopy of π-conjugated dendrimers: cooperative enhancement and coherent domains, Journal of Luminescence, Volume 111 (2005) no. 4, p. 291 | DOI:10.1016/j.jlumin.2004.10.009
- Effect of the orientational disorder on the hyperpolarizability measurement of amphiphilic push-pull chromophores in Langmuir–Blodgett monolayers, Optics Communications, Volume 247 (2005) no. 1-3, p. 213 | DOI:10.1016/j.optcom.2004.11.057
- Action cross sections of two-photon excited luminescence of some Eu(iii) and Tb(iii) complexes, Photochemical Photobiological Sciences, Volume 4 (2005) no. 7, p. 531 | DOI:10.1039/b504495b
- Extremely Strong Near-IR Two-Photon Absorption in Conjugated Porphyrin Dimers: Quantitative Description with Three-Essential-States Model, The Journal of Physical Chemistry B, Volume 109 (2005) no. 15, p. 7223 | DOI:10.1021/jp044261x
- Strong Modulation of Two-Photon Excited Fluorescence of Quadripolar Dyes by (De)Protonation, Journal of the American Chemical Society, Volume 126 (2004) no. 50, p. 16294 | DOI:10.1021/ja0446606
- Organization and Orientation of Amphiphilic Push−Pull Chromophores Deposited in Langmuir−Blodgett Monolayers Studied by Second Harmonic Generation and Atomic Force Microscopy, Langmuir, Volume 20 (2004) no. 19, p. 8165 | DOI:10.1021/la0491706
- Effect of the relative orientation of the CN moieties on the static electric (hyper)polarizability of (CN)2, Molecular Physics, Volume 102 (2004) no. 1, p. 13 | DOI:10.1080/00268970310001658149
- The Influence of σ and π Acceptors on Two‐Photon Absorption and Solvatochromism of Dipolar and Quadrupolar Unsaturated Organic Compounds, ChemPhysChem, Volume 4 (2003) no. 3, p. 249 | DOI:10.1002/cphc.200390041
- Second Harmonic Generation and Fluorescence of CMONS Dye Nanocrystals Grown in a Sol‐Gel Thin Film, ChemPhysChem, Volume 4 (2003) no. 7, p. 757 | DOI:10.1002/cphc.200300681
Cité par 50 documents. Sources : Crossref
Commentaires - Politique