[Microscopie de fluorescence de protéines autofluorescentes uniques pour la biologie cellulaire]
Nous présentons une revue sur l'utilisation des protéines autofluorescentes en microscopie de molécules uniques en biologie. Les caractéristiques photophysiques de plusieurs mutants de la protéine fluorescente verte (la « GFP ») ainsi que celles de la DsRed y sont comparées et discutées de manière critique en vue de leur utilisation dans des cellules vivantes. Des méthodes alternatives d'excitation, telle l'excitation biphotonique, ou d'analyses, telle la méthode de spectroscopie par corrélation de fluorescence sont envisagées. Nous rendons compte d'expériences utilisant la eGFP et préférentiellement la eYFP au niveau de la molécule unique dans des cellules vivantes. Nous reportons enfin, la première utilisation au niveau de la molécule individuelle de la citrine, un mutant de la eYFP plus résistant au photoblanchiment et son application à l'étude de la dynamique de récepteurs de neurotransmetteurs individuels dans la membrane de cellules vivantes.
In this paper we review the applicability of autofluorescent proteins for single-molecule imaging in biology. The photophysical characteristics of several mutants of the Green Fluorescent Protein (GFP) and those of DsRed are compared and critically discussed for their use in cellular biology. The alternative use of two-photon excitation at the single-molecule level or Fluorescence Correlation Spectroscopy is envisaged for the study of individual autofluorescent proteins. Single-molecule experiments performed in live cells using eGFP and preferably eYFP fusion proteins are reviewed. Finally, the first use at the single-molecule level of citrine, a more photostable variant of the eYFP is reported when fused to a receptor for neurotransmitter in live cells.
Accepté le :
Publié le :
Mot clés : détection de molécules uniques, GFP, DsRed, microscopie de fluorescence, excitation à deux photons, spectroscopie par corrélation de fluorescence
Laurent Cognet 1 ; Françoise Coussen 2 ; Daniel Choquet 2 ; Brahim Lounis 1
@article{CRPHYS_2002__3_5_645_0, author = {Laurent Cognet and Fran\c{c}oise Coussen and Daniel Choquet and Brahim Lounis}, title = {Fluorescence microscopy of single autofluorescent proteins for cellular biology}, journal = {Comptes Rendus. Physique}, pages = {645--656}, publisher = {Elsevier}, volume = {3}, number = {5}, year = {2002}, doi = {10.1016/S1631-0705(02)01341-5}, language = {en}, }
TY - JOUR AU - Laurent Cognet AU - Françoise Coussen AU - Daniel Choquet AU - Brahim Lounis TI - Fluorescence microscopy of single autofluorescent proteins for cellular biology JO - Comptes Rendus. Physique PY - 2002 SP - 645 EP - 656 VL - 3 IS - 5 PB - Elsevier DO - 10.1016/S1631-0705(02)01341-5 LA - en ID - CRPHYS_2002__3_5_645_0 ER -
%0 Journal Article %A Laurent Cognet %A Françoise Coussen %A Daniel Choquet %A Brahim Lounis %T Fluorescence microscopy of single autofluorescent proteins for cellular biology %J Comptes Rendus. Physique %D 2002 %P 645-656 %V 3 %N 5 %I Elsevier %R 10.1016/S1631-0705(02)01341-5 %G en %F CRPHYS_2002__3_5_645_0
Laurent Cognet; Françoise Coussen; Daniel Choquet; Brahim Lounis. Fluorescence microscopy of single autofluorescent proteins for cellular biology. Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 645-656. doi : 10.1016/S1631-0705(02)01341-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01341-5/
[1] Illuminating single molecules in condensed matter, Science, Volume 283 (1999), pp. 1670-1676
[2] Fluorescence spectroscopy of single biomolecules, Science, Volume 283 (1999), pp. 1676-1683
[3] Annu. Rev. Phys. Chem., 59 (1998), p. 441
[4] Single-molecule enzymatic dynamics, Science, Volume 282 (1998), pp. 1877-1882
[5] Single-molecule imaging of EGFR signalling on the surface of living cells, Nat. Cell Biol., Volume 2 (2000), pp. 168-172
[6] Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy, EMBO J., Volume 19 (2000), pp. 892-901
[7] Single-molecule analysis of chemotactic signaling in dictyostelium cells, Science, Volume 294 (2001), pp. 864-867
[8] Real-time single-molecule imaging of the infection pathway of an adeno-associated virus, Science, Volume 294 (2001), pp. 1929-1932
[9] Handbook of Fluorescent Probes and Research Chemicals, Eugene, Oregon, 1996
[10] Semiconductor nanocrystals as fluorescent biological labels, Science, Volume 281 (1998), pp. 2013-2016
[11] Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, Volume 281 (1998), pp. 2016-2018
[12] Terrylenimides: New NIR fluorescent dyes, Chem. Eur. J., Volume 3 (1997), pp. 219-225
[13] The green fluorescent protein, Annu. Rev. Biochem., Volume 67 (1998), pp. 509-544
[14] Fluorescent proteins from nonbioluminescent anthozoa species [In Process Citation], Nat. Biotechnol., Volume 17 (1999) no. 10, pp. 969-973
[15] Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy, Biophys. J., Volume 80 (2001), pp. 2396-2408
[16] Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface, Biophys. J., Volume 80 (2001), pp. 2667-2677
[17] Single-molecule imaging of l-type Ca2+ channels in live cells, Biophys. J., Volume 81 (2001), pp. 2639-2646
[18] Principles of Fluorescence Spectroscopy, second edition, Kluwer Academic/Plenum, 1999
[19] On/off blinking and switching behaviour of single molecules of green fluorescent protein, Nature, Volume 388 (1997), pp. 355-358
[20] The fluorescence dynamics of single molecules of green fluorescent protein, J. Phys. Chem. A, Volume 103 (1999), pp. 10553-10560
[21] Confocal microscopy of single green fluorescent protein, Bioimaging, Volume 6 (1998), pp. 54-61
[22] Visualising individual green fluorescent proteins with a near field optical microscope, Cytometry, Volume 36 (1999), pp. 239-246
[23] Imaging and tracking of single GFP molecules in solution, Biophys. J., Volume 78 (2000), pp. 2170-2179
[24] Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules, Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 7237-7242
[25] Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy, J. Chem. Phys., Volume 250 (1999), pp. 171-186
[26] Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins, Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 151-156
[27] Characterization of photophysics and mobility of single molecules in a fluid lipid membrane, J. Phys. Chem., Volume 99 (1995), pp. 17662-17668
[28] Single-molecule fluorescence resonant energy transfer in Calcium-concentration-dependent cameleon, J. Phys. Chem. B, Volume 104 (2000), pp. 3676-3682
[29] J. Histochem. Cytochem., 27 (1979), pp. 44-48
[30] Autofluorescence of viable cultured mammalian cells, J. Histochem. Cytochem., Volume 27 (1979), pp. 36-43
[31] Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity, Photochem. Photobiol., Volume 69 (1999), pp. 364-374
[32] Single-molecule detection with total internal reflection excitation: comparing signal-to-background and total signals in different geometries, Cytometry, Volume 36 (1999), pp. 224-231
[33] Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution, Nature, Volume 374 (1995), pp. 555-559
[34] Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy, Biophys. J., Volume 76 (1999), pp. 509-516
[35] Detection and lifetime measurement of single molecules in flowing sample streams by laser-induced fluorescence, Appl. Phys. Lett., Volume 62 (1993), pp. 2030-2032
[36] Ultrahigh-resolution multicolor colocalization of single fluorescent probes, Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 9461-9466
[37] Recent advances in technology for measuring and manipulating cell signals, Curr. Opin. Neurobiol., Volume 10 (2000), pp. 416-421
[38] The structure of the chromophore within DsRed, a red fluorescent protein from coral [In Process Citation], Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 11990-11995
[39] Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral [In Process Citation], Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 11984-11989
[40] Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (DsRed) and yellow (citrine), Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 11996-12001
[41] Photophysics of DsRed, a Red Fluorescent Protein, from the ensemble to the single-molecule level, J. Phys. Chem. B, Volume 105 (2001), pp. 5048-5054
[42] Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules, Science, Volume 277 (1997), pp. 1074-1077
[43] J. Chem. Phys., 109 (1998), pp. 855-865
[44] Organic Molecules for Nonlinear Optics an Photonics, Kluwer, Dordrecht, 1991
[45] Two-photon molecular excitation in laser-scanning microscopy (J.B. Pawley, ed.), Handbook of Biological Confocal Microscopy, Plenum, New-York, 1995, pp. 445-458
[46] Two-photon excitation action cross-sections of the autofluorescent proteins, Chem. Phys. Lett., Volume 350 (2001), pp. 71-77
[47] High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy, Biochem. Biophys. Res. Commun., Volume 291 (2002), pp. 1272-1275
[48] Decocalized excitation and excitation transfer (O. Sinanoglu, ed.), Modern Quantum Chemistry, 3, Academic Press, New York, 1965, pp. 93-137
[49] Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor, Proc. Nat. Acad. Sci. USA, Volume 93 (1996), pp. 6264-6268
[50] Direct observation of ligand colocalization on individual receptor molecules, Biophys. J., Volume 74 (1998) no. 5, pp. 2223-2226
[51] Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism, Proc. Nat. Acad. Sci. USA, Volume 96 (1999), pp. 893-898
[52] Using GFP in FRET-based applications, Trends Cell Biol., Volume 9 (1999), pp. 57-60
[53] Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer, Biochemistry, Volume 40 (2001), pp. 2502-2510
[54] Dynamic and quantitative Ca2+ measurements using improved cameleons, Proc. Nat. Acad. Sci. USA, Volume 96 (1999), pp. 2135-2140
[55] Thermodynamic fluctuations in a reacting system—Measurement by fluorescence correlation spectroscopy, Phys. Rev. Lett., Volume 29 (1972), pp. 705-708
[56] Chem. Phys., 4 (1974), pp. 390-401
[57] Accessing molecular dynamics in cells by fluorescence correlation spectroscopy, Biol. Chem., Volume 382 (2001), pp. 491-494
[58] Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes, Cytometry, Volume 36 (1999), pp. 176-182
[59] Reducing the environmental sensitivity of yellow fluorescent protein, J. Biol. Chem., Volume 276 (2001), pp. 29188-29194
[60] Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy, Proc. Nat. Acad. Sci. USA, Volume 98 (2001), pp. 14398-14403
[61] The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection, Proc. Nat. Acad. Sci. USA, Volume 98 (2001), pp. 14392-14397
Cité par Sources :
Commentaires - Politique