Comptes Rendus
Biophysique à l'échelle de la molécule unique/Single molecule biophysics
Fluorescence microscopy of single autofluorescent proteins for cellular biology
[Microscopie de fluorescence de protéines autofluorescentes uniques pour la biologie cellulaire]
Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 645-656.

Nous présentons une revue sur l'utilisation des protéines autofluorescentes en microscopie de molécules uniques en biologie. Les caractéristiques photophysiques de plusieurs mutants de la protéine fluorescente verte (la « GFP ») ainsi que celles de la DsRed y sont comparées et discutées de manière critique en vue de leur utilisation dans des cellules vivantes. Des méthodes alternatives d'excitation, telle l'excitation biphotonique, ou d'analyses, telle la méthode de spectroscopie par corrélation de fluorescence sont envisagées. Nous rendons compte d'expériences utilisant la eGFP et préférentiellement la eYFP au niveau de la molécule unique dans des cellules vivantes. Nous reportons enfin, la première utilisation au niveau de la molécule individuelle de la citrine, un mutant de la eYFP plus résistant au photoblanchiment et son application à l'étude de la dynamique de récepteurs de neurotransmetteurs individuels dans la membrane de cellules vivantes.

In this paper we review the applicability of autofluorescent proteins for single-molecule imaging in biology. The photophysical characteristics of several mutants of the Green Fluorescent Protein (GFP) and those of DsRed are compared and critically discussed for their use in cellular biology. The alternative use of two-photon excitation at the single-molecule level or Fluorescence Correlation Spectroscopy is envisaged for the study of individual autofluorescent proteins. Single-molecule experiments performed in live cells using eGFP and preferably eYFP fusion proteins are reviewed. Finally, the first use at the single-molecule level of citrine, a more photostable variant of the eYFP is reported when fused to a receptor for neurotransmitter in live cells.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(02)01341-5
Keywords: single-molecule, GFP, DsRed, fluorescence microscopy, two-photon excitation, fluorescence correlation spectroscopy
Mots-clés : détection de molécules uniques, GFP, DsRed, microscopie de fluorescence, excitation à deux photons, spectroscopie par corrélation de fluorescence

Laurent Cognet 1 ; Françoise Coussen 2 ; Daniel Choquet 2 ; Brahim Lounis 1

1 Centre de physique moléculaire optique et hertzienne – CNRS UMR 5798 et Université Bordeaux 1, 351, Cours de la Libération, 33405 Talence, France
2 Laboratoire de physiologie cellulaire de la synapse – CNRS UMR 5091 et Université Bordeaux 2, Institut François Magendie, 1, rue Camille Saint-Saëns, 33077 Bordeaux, France
@article{CRPHYS_2002__3_5_645_0,
     author = {Laurent Cognet and Fran\c{c}oise Coussen and Daniel Choquet and Brahim Lounis},
     title = {Fluorescence microscopy of single autofluorescent proteins for cellular biology},
     journal = {Comptes Rendus. Physique},
     pages = {645--656},
     publisher = {Elsevier},
     volume = {3},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01341-5},
     language = {en},
}
TY  - JOUR
AU  - Laurent Cognet
AU  - Françoise Coussen
AU  - Daniel Choquet
AU  - Brahim Lounis
TI  - Fluorescence microscopy of single autofluorescent proteins for cellular biology
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 645
EP  - 656
VL  - 3
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01341-5
LA  - en
ID  - CRPHYS_2002__3_5_645_0
ER  - 
%0 Journal Article
%A Laurent Cognet
%A Françoise Coussen
%A Daniel Choquet
%A Brahim Lounis
%T Fluorescence microscopy of single autofluorescent proteins for cellular biology
%J Comptes Rendus. Physique
%D 2002
%P 645-656
%V 3
%N 5
%I Elsevier
%R 10.1016/S1631-0705(02)01341-5
%G en
%F CRPHYS_2002__3_5_645_0
Laurent Cognet; Françoise Coussen; Daniel Choquet; Brahim Lounis. Fluorescence microscopy of single autofluorescent proteins for cellular biology. Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 645-656. doi : 10.1016/S1631-0705(02)01341-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01341-5/

[1] W.E. Moerner; M. Orrit Illuminating single molecules in condensed matter, Science, Volume 283 (1999), pp. 1670-1676

[2] S. Weiss Fluorescence spectroscopy of single biomolecules, Science, Volume 283 (1999), pp. 1676-1683

[3] X.S. Xie; J.K. Trautman Annu. Rev. Phys. Chem., 59 (1998), p. 441

[4] H.P. Lu; L. Xun; X.S. Xie Single-molecule enzymatic dynamics, Science, Volume 282 (1998), pp. 1877-1882

[5] Y. Sako; S. Minoghchi; T. Yanagida Single-molecule imaging of EGFR signalling on the surface of living cells, Nat. Cell Biol., Volume 2 (2000), pp. 168-172

[6] G.J. Schutz; G. Kada; V.P. Pastushenko; H. Schindler Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy, EMBO J., Volume 19 (2000), pp. 892-901

[7] M. Ueda; Y. Sako; T. Tanaka; P. Devreotes; T. Yanagida Single-molecule analysis of chemotactic signaling in dictyostelium cells, Science, Volume 294 (2001), pp. 864-867

[8] G. Seisenberger; M.U. Ried; T. Endre{beta}; H. Buning; M. Hallek; C. Brauchle Real-time single-molecule imaging of the infection pathway of an adeno-associated virus, Science, Volume 294 (2001), pp. 1929-1932

[9] R.P. Hauglund Handbook of Fluorescent Probes and Research Chemicals, Eugene, Oregon, 1996

[10] M. Bruchez; M. Moronne; P. Gin; S. Weiss; A.P. Alivisatos Semiconductor nanocrystals as fluorescent biological labels, Science, Volume 281 (1998), pp. 2013-2016

[11] W.C. Chan; S. Nie Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, Volume 281 (1998), pp. 2016-2018

[12] F.O. Holtrup; G.R.J. Müller; H. Quante; S. Defeyter; F.C. DeSchryver; K. Müllen Terrylenimides: New NIR fluorescent dyes, Chem. Eur. J., Volume 3 (1997), pp. 219-225

[13] R.Y. Tsien The green fluorescent protein, Annu. Rev. Biochem., Volume 67 (1998), pp. 509-544

[14] M.V. Matz; A.F. Fradkov; Y.A. Labas; A.P. Savitsky; A.G. Zaraisky; M.L. Markelov; S.A. Lukyanov Fluorescent proteins from nonbioluminescent anthozoa species [In Process Citation], Nat. Biotechnol., Volume 17 (1999) no. 10, pp. 969-973

[15] G.S. Harms; L. Cognet; P.H. Lommerse; G.A. Blab; T. Schmidt Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy, Biophys. J., Volume 80 (2001), pp. 2396-2408

[16] R. Iino; I. Koyama; A. Kusumi Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface, Biophys. J., Volume 80 (2001), pp. 2667-2677

[17] G.S. Harms; L. Cognet; P.H. Lommerse; G.A. Blab; H. Kahr; R. Gamsjager; H.P. Spaink; N.M. Soldatov; C. Romanin; T. Schmidt Single-molecule imaging of l-type Ca2+ channels in live cells, Biophys. J., Volume 81 (2001), pp. 2639-2646

[18] J.R. Lakowicz Principles of Fluorescence Spectroscopy, second edition, Kluwer Academic/Plenum, 1999

[19] R.M. Dickson; A.B. Cubitt; R.Y. Tsien; W.E. Moerner On/off blinking and switching behaviour of single molecules of green fluorescent protein, Nature, Volume 388 (1997), pp. 355-358

[20] E.J.G. Peterman; S. Brasselet; W.E. Moerner The fluorescence dynamics of single molecules of green fluorescent protein, J. Phys. Chem. A, Volume 103 (1999), pp. 10553-10560

[21] G. Jung; J. Wiehler; W. Göhde; J. Tittel; T. Basché; B. Steipe; C. Bräuchle Confocal microscopy of single green fluorescent protein, Bioimaging, Volume 6 (1998), pp. 54-61

[22] M.F. Garcia-Parajo; J.A. Veerman; G.M. Segers-Nolten; B.G. de Grooth; J. Greve; N.F. van Hulst Visualising individual green fluorescent proteins with a near field optical microscope, Cytometry, Volume 36 (1999), pp. 239-246

[23] U. Kubitscheck; O. Kuckmann; T. Kues; R. Peters Imaging and tracking of single GFP molecules in solution, Biophys. J., Volume 78 (2000), pp. 2170-2179

[24] M.F. Garcia-Parajo; G.M. Segers-Nolten; J. Veerman; J. Greve; N.F. van Hulst Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules, Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 7237-7242

[25] J. Widengren; U. Mets; R. Rigler Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy, J. Chem. Phys., Volume 250 (1999), pp. 171-186

[26] P. Schwille; S. Kummer; A.A. Heikal; W.E. Moerner; W.W. Webb Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins, Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 151-156

[27] T. Schmidt; G.J. Schuetz; W. Baumgartner; H.J. Gruber; H. Schindler Characterization of photophysics and mobility of single molecules in a fluid lipid membrane, J. Phys. Chem., Volume 99 (1995), pp. 17662-17668

[28] S. Brasselet; E.J. Peterman; W.E. Moerner Single-molecule fluorescence resonant energy transfer in Calcium-concentration-dependent cameleon, J. Phys. Chem. B, Volume 104 (2000), pp. 3676-3682

[29] R.C. Benson; R.A. Meyer; M.E. Zaruba; G.M. McKhann J. Histochem. Cytochem., 27 (1979), pp. 44-48

[30] J.E. Aubin Autofluorescence of viable cultured mammalian cells, J. Histochem. Cytochem., Volume 27 (1979), pp. 36-43

[31] A.C. Croce; A. Spano; D. Locatelli; S. Barni; L. Sciola; G. Bottiroli Dependence of fibroblast autofluorescence properties on normal and transformed conditions. Role of the metabolic activity, Photochem. Photobiol., Volume 69 (1999), pp. 364-374

[32] W.P. Ambrose; P.M. Goodwin; J.P. Nolan Single-molecule detection with total internal reflection excitation: comparing signal-to-background and total signals in different geometries, Cytometry, Volume 36 (1999), pp. 224-231

[33] T. Funatsu; Y. Harada; M. Tokunaga; K. Saito; T. Yanagida Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution, Nature, Volume 374 (1995), pp. 555-559

[34] K.-F. Giebel; C. Bechinger; S. Herminghaus; M. Riedel; P. Leiderer; U. Weiland; M. Bastmeyer Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy, Biophys. J., Volume 76 (1999), pp. 509-516

[35] C.W. Wilkerson; J. Goodwin; W.P. Ambrose; J.C. Martin; R.A. Keller Detection and lifetime measurement of single molecules in flowing sample streams by laser-induced fluorescence, Appl. Phys. Lett., Volume 62 (1993), pp. 2030-2032

[36] T.D. Lacoste; X. Michalet; F. Pinaud; D.S. Chemla; A.P. Alivisatos; S. Weiss Ultrahigh-resolution multicolor colocalization of single fluorescent probes, Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 9461-9466

[37] D.A. Zacharias; G.S. Baird; R.Y. Tsien Recent advances in technology for measuring and manipulating cell signals, Curr. Opin. Neurobiol., Volume 10 (2000), pp. 416-421

[38] L.A. Gross; G.S. Baird; R.C. Hoffman; K.K. Baldridge; R.Y. Tsien The structure of the chromophore within DsRed, a red fluorescent protein from coral [In Process Citation], Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 11990-11995

[39] G.S. Baird; D.A. Zacharias; R.Y. Tsien Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral [In Process Citation], Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 11984-11989

[40] A.A. Heikal; S.T. Hess; G.S. Baird; R.Y. Tsien; W.W. Webb Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: coral red (DsRed) and yellow (citrine), Proc. Nat. Acad. Sci. USA, Volume 97 (2000), pp. 11996-12001

[41] B. Lounis; J. Deich; F.I. Rosell; S.G. Boxer; W.E. Moerner Photophysics of DsRed, a Red Fluorescent Protein, from the ensemble to the single-molecule level, J. Phys. Chem. B, Volume 105 (2001), pp. 5048-5054

[42] D.A.V. Bout; W.-T. Yip; D. Hu; D.-K. Fu; T.M. Swager; P.F. Barbara Discrete intensity jumps and intramolecular electronic energy transfer in the spectroscopy of single conjugated polymer molecules, Science, Volume 277 (1997), pp. 1074-1077

[43] R. Kumble; R. Hochstrasser J. Chem. Phys., 109 (1998), pp. 855-865

[44] C. Bubeck; A. Grund; A. Kaltbeitzel; D. Neher; A. Mathy; G. Wegner Organic Molecules for Nonlinear Optics an Photonics, Kluwer, Dordrecht, 1991

[45] W. Denk; D.W. Piston; W.W. Webb Two-photon molecular excitation in laser-scanning microscopy (J.B. Pawley, ed.), Handbook of Biological Confocal Microscopy, Plenum, New-York, 1995, pp. 445-458

[46] G.A. Blab; P.H.M. Lommerse; L. Cognet; S.H. Harms; T. Schmidt Two-photon excitation action cross-sections of the autofluorescent proteins, Chem. Phys. Lett., Volume 350 (2001), pp. 71-77

[47] T.S. Chen; S.Q. Zeng; Q.M. Luo; Z.H. Zhang; W. Zhou High-order photobleaching of green fluorescent protein inside live cells in two-photon excitation microscopy, Biochem. Biophys. Res. Commun., Volume 291 (2002), pp. 1272-1275

[48] T. Förster Decocalized excitation and excitation transfer (O. Sinanoglu, ed.), Modern Quantum Chemistry, 3, Academic Press, New York, 1965, pp. 93-137

[49] T. Ha; T. Enderle; D.F. Ogletree; D.S. Chemla; P.R. Selvin; S. Weiss Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor, Proc. Nat. Acad. Sci. USA, Volume 93 (1996), pp. 6264-6268

[50] G.J. Schuetz; W. Trabesinger; T. Schmidt Direct observation of ligand colocalization on individual receptor molecules, Biophys. J., Volume 74 (1998) no. 5, pp. 2223-2226

[51] T. Ha; A.Y. Ting; J. Liang; W.B. Caldwell; A.A. Deniz; D.S. Chemla; P.G. Schultz; S. Weiss Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism, Proc. Nat. Acad. Sci. USA, Volume 96 (1999), pp. 893-898

[52] B.A. Pollok; R. Heim Using GFP in FRET-based applications, Trends Cell Biol., Volume 9 (1999), pp. 57-60

[53] H. Mizuno; A. Sawano; P. Eli; H. Hama; A. Miyawaki Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer, Biochemistry, Volume 40 (2001), pp. 2502-2510

[54] A. Miyawaki; O. Griesbeck; R. Heim; R.Y. Tsien Dynamic and quantitative Ca2+ measurements using improved cameleons, Proc. Nat. Acad. Sci. USA, Volume 96 (1999), pp. 2135-2140

[55] D. Magde; E. Elson; W.W. Webb Thermodynamic fluctuations in a reacting system—Measurement by fluorescence correlation spectroscopy, Phys. Rev. Lett., Volume 29 (1972), pp. 705-708

[56] M. Ehrenberg; R. Rigler Chem. Phys., 4 (1974), pp. 390-401

[57] P. Dittrich; F. Malvezzi-Campeggi; M. Jahnz; P. Schwille Accessing molecular dynamics in cells by fluorescence correlation spectroscopy, Biol. Chem., Volume 382 (2001), pp. 491-494

[58] P. Schwille; J. Korlach; W.W. Webb Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes, Cytometry, Volume 36 (1999), pp. 176-182

[59] O. Griesbeck; G.S. Baird; R.E. Campbell; D.A. Zacharias; R.Y. Tsien Reducing the environmental sensitivity of yellow fluorescent protein, J. Biol. Chem., Volume 276 (2001), pp. 29188-29194

[60] M. Cotlet; J. Hofkens; S. Habuchi; G. Dirix; M. Van Guyse; J. Michiels; J. Vanderleyden; F.C. De Schryver Identification of different emitting species in the red fluorescent protein DsRed by means of ensemble and single-molecule spectroscopy, Proc. Nat. Acad. Sci. USA, Volume 98 (2001), pp. 14398-14403

[61] M.F. Garcia-Parajo; M. Koopman; E.M.H.P. van Dijk; V. Subramaniam; N.F. van Hulst The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection, Proc. Nat. Acad. Sci. USA, Volume 98 (2001), pp. 14392-14397

Cité par Sources :

Commentaires - Politique