Comptes Rendus
Biophysique à l'échelle de la molécule unique/single-molecule biophysics
Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation
[Observation des cycles enzymatiques des ADN topoisomérases par micromanipulation de molécules individuelles]
Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 595-618.

Dans cet article, nous décrivons des expériences sur des molécules individuelles utilisant des pinces magnétiques. Nous les utilisons pour caractériser les enzymes topoisomérases dont le rôle biologique est de démêler les molécules d'ADN. Dans un premier temps, l'élasticité d'une molécule d'ADN est mesurée en utilisant cette technique de micromanipulation. Nous montrons qu'il est facile de contrôler une contrainte de torsion sur une molécule d'ADN et que son effet sur son élasticité peut être mesuré avec précision. Nous décrivons ensuite l'observation de l'activité enzymatique à l'échelle de la molécule unique. Ceci nous permet d'accéder à la mesure des constantes réactionnelles de l'enzyme tel sa vitesse ou sa processivité. Nous passons en revue les résultats que nous avons obtenus en particulier sut la topoisomérase II, et nous montrons qu'il est possible d'enregistrer en temps réel les cycles de déroulement d'une molécule d'ADN sous torsion. Ceci nous permet une caractérisation précise de la biochimie de cette enzyme. La mesure directe des cycles enzymatiques ne peut se faire que lorsque le rapport signal sur bruit du dispositif expérimental est élevé. Nous discutons également les méthodes de traitement des données qui permettent d'accéder à la distribution des cycles enzymatiques en fonction de la qualité du rapport signal sur bruit.

In this article, we describe single-molecule assays using magnetic traps and we applied these assays to topoisomerase enzymes which unwind and disentangle DNA molecules. First, the elasticity of single DNA molecule is characterized using the magnetic trap. We show that a twisting constraint may be easily applied and that its effect upon DNA may be measured accurately. Then we describe how the topoisomerase activity may be observed at the single-molecule level giving direct access to the important biological parameters of the enzyme such as velocity and processivity. Furthermore, individual cycles of unwinding can be observed in real time. This permits an accurate characterization of the enzyme's biochemical cycle. The data treatment required to identify and analyze individual topoisomerization cycles will be presented in detail. This analysis is applicable to a wide variety of molecular motors.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(02)01347-6
Keywords: micromanipulation, magnetic tweezers, topoisomerases
Mot clés : micromanipulation, pinces magnetiques, topoisomerases

Terence R. Strick 1 ; Gilles Charvin 2 ; Nynke H. Dekker 2 ; Jean-François Allemand 2 ; David Bensimon 2 ; Vincent Croquette 2

1 Cold Spring Harbor Labs, Beckman Building, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
2 Laboratoire de physique statistique et département de biologie de l'École normale supérieure, UMR 8550 CNRS, associated with the Universities of Paris VI and Paris VII, 24, rue Lhomond, 75231 Paris cedex 05, France
@article{CRPHYS_2002__3_5_595_0,
     author = {Terence R. Strick and Gilles Charvin and Nynke H. Dekker and Jean-Fran\c{c}ois Allemand and David Bensimon and Vincent Croquette},
     title = {Tracking enzymatic steps of {DNA} topoisomerases using single-molecule micromanipulation},
     journal = {Comptes Rendus. Physique},
     pages = {595--618},
     publisher = {Elsevier},
     volume = {3},
     number = {5},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01347-6},
     language = {en},
}
TY  - JOUR
AU  - Terence R. Strick
AU  - Gilles Charvin
AU  - Nynke H. Dekker
AU  - Jean-François Allemand
AU  - David Bensimon
AU  - Vincent Croquette
TI  - Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 595
EP  - 618
VL  - 3
IS  - 5
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01347-6
LA  - en
ID  - CRPHYS_2002__3_5_595_0
ER  - 
%0 Journal Article
%A Terence R. Strick
%A Gilles Charvin
%A Nynke H. Dekker
%A Jean-François Allemand
%A David Bensimon
%A Vincent Croquette
%T Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation
%J Comptes Rendus. Physique
%D 2002
%P 595-618
%V 3
%N 5
%I Elsevier
%R 10.1016/S1631-0705(02)01347-6
%G en
%F CRPHYS_2002__3_5_595_0
Terence R. Strick; Gilles Charvin; Nynke H. Dekker; Jean-François Allemand; David Bensimon; Vincent Croquette. Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation. Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 595-618. doi : 10.1016/S1631-0705(02)01347-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01347-6/

[1] K. Svoboda; C.F. Schmidt; B.J. Schnapp; S.M. Block Direct observation of kinesin stepping by optical trapping interferometry, Nature, Volume 365 (1993), pp. 721-727

[2] J.T. Finer; R.M. Simmons; J.A. Spudich Single myosin molecule mechanics: piconewton forces and nanometre steps, Nature, Volume 368 (1994), pp. 113-119

[3] H. Noji; R. Yasuda; M. Yoshida; K. Kinosita Direct observation of the rotation of F1-ATPase, Nature, Volume 386 (1997), pp. 299-302

[4] J.-F. Allemand; D. Bensimon; V. Croquette; R. Lavery; B. Maier; T. Strick Le jokari moléculaire, Biofutur, Volume 190 (1999), pp. 26-30

[5] E.L. Florin; V.T. Moy; H.E. Gaub Adhesion force between individual ligand-receptor pairs, Science, Volume 264 (1994), pp. 415-417

[6] F. Oesterhelt; D. Oesterhelt; M. Pfeiffer; A. Engel; H.E. Gaub; D.J. Müller Unfolding pathways of individual bacteriorhodopsins, Science, Volume 286 (2000), pp. 143-146

[7] A. Ashkin Applications of laser radiation pressure, Science, Volume 210 (1980), pp. 1081-1088

[8] A. Ashkin; K. Schütze; J.M. Dziedzic; U. Eutenauer; M. Schliwa Force generation of organelle transport measured in vivo by an infrared laser trap, Nature, Volume 348 (1990), pp. 346-348

[9] K. Svoboda; S. Block Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct., Volume 23 (1994), pp. 247-285

[10] E. Evans; K. Ritchie; R. Merkel Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces, Biophys. J., Volume 68 (1995), pp. 2580-2587

[11] R. Merkel; P. Nassoy; A. Leung; K. Ritchie; E. Evans Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy, Nature, Volume 397 (1997), pp. 50-53

[12] S.B. Smith; L. Finzi; C. Bustamante Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, Volume 258 (1992), pp. 1122-1126

[13] R. Lavery; A. Lebrun; J.-F. Allemand; D. Bensimon; V. Croquette Structure and mechanics of single biomolecules: Experiment and simulation, J. Phys. Condens. Matter, Volume 14 (2002), p. R383-R414

[14] T. Strick; J.F. Allemand; D. Bensimon; A. Bensimon; V. Croquette The elasticity of a single supercoiled DNA molecule, Science, Volume 271 (1996), pp. 1835-1837

[15] T. Strick; J.-F. Allemand; D. Bensimon; V. Croquette The behavior of supercoiled DNA, Biophys. J., Volume 74 (1998), pp. 2016-2028

[16] C. Gosse; V. Croquette Magnetic tweezers: micromanipulation and force measurement at the molecular level, Biophys. J. (2002) (to appear in June)

[17] K. Visscher; M.J. Schnitzer; S.M. Block Single kinesin molecules studied with a molecular force clamp, Nature, Volume 400 (1999), pp. 184-189

[18] R. Yasuda; H. Noji; K. Kinosita; M. Yoshida F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 steps, Cell, Volume 93 (1998), pp. 1117-1124

[19] G. Charvin; D. Bensimon; V. Croquette On the relation between noise spectra and the distribution of time between steps for single molecular motors, Single Mol., Volume 3 (2002), pp. 43-48

[20] M.J. Schnitzer; S.M. Block Statistical kinetics of processive enzymes, Cold Spring Harbor Symposia on Quantitative Biology, LX, 1995, pp. 793-801

[21] J.F. Marko; E.D. Siggia Fluctuations and supercoiling of DNA, Science, Volume 265 (1994), pp. 506-508

[22] C. Bouchiat; M.D. Wang; S.M. Block; J.-F. Allemand; T.R. Strick; V. Croquette Estimating the persistence length of a Worm-Like Chain molecule from force-extension measurements, Biophys. J., Volume 76 (1999), pp. 409-413

[23] P. Cluzel; A. Lebrun; C. Heller; R. Lavery; J.-L. Viovy; D. Chatenay; F. Caron DNA: an extensible molecule, Science, Volume 271 (1996), pp. 792-794

[24] S.B. Smith; Y. Cui; C. Bustamante Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules, Science, Volume 271 (1996), pp. 795-799

[25] T.C. Boles; J.H. White; M.R. Cozzarelli Structure of plectonemically supercoiled DNA, J. Mol. Biol., Volume 213 (1990), pp. 931-951

[26] J. Bednar; P. Furrer; A. Stasiak; J. Dubochet; E. Egelman; A. BatetSrich The twist, writhe and overall shape of supercoiled DNA change during couterion-induced transition from a loosely to a tightly interwound superhelix, J. Mol. Biol., Volume 235 (1994), pp. 825-847

[27] J.H. White Self linking and the Gauss integral in higher dimensions, Amer. J. Math., Volume 91 (1969), pp. 693-728

[28] C.R. Calladine; H.R. Drew Understanding DNA, Academic Press, 1992

[29] T. Strick; V. Croquette; D. Bensimon Homologous pairing in streched supercoiled DNA, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 10579-10583

[30] J.-F. Allemand; D. Bensimon; R. Lavery; V. Croquette Stretched and overwound DNA forms a Pauling-like structure with exposed bases, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 14152-14157

[31] J.F. Marko; E. Siggia Statistical mechanics of supercoiled DNA, Phys. Rev. E, Volume 52 (1995) no. 3, pp. 2912-2938

[32] C. Bouchiat; M. Mézard Elasticity theory of a supercoiled DNA molecules, Phys. Rev. Lett., Volume 80 (1998), pp. 1556-1559

[33] C. Bouchiat; M. Mézard Elasticity rod model of supercoiled DNA molecules (1999) | arXiv

[34] J.D. Moroz; P. Nelson Torsional directed walks, entropic elasticity and DNA twist stiffness, Proc. Natl. Acad. Sci. USA, Volume 94 (1998), pp. 14418-14422

[35] J.D. Moroz; P. Nelson Entropic elasticity of twist-storing polymers, Macromolecules, Volume 31 (1998), pp. 6333-6347

[36] T.R. Strick; J.-F. Allemand; D. Bensimon; V. Croquette Stress induced structural transitions in DNA and proteins, Annu. Rev. Biophys. Biomol. Struct., Volume 29 (2000), pp. 523-540

[37] J.F. Léger; G. Romano; A. Sarkar; J. Robert; L. Bourdieu; D. Chatenay; J.F. Marko Structural transitions of a twisted and stretched DNA molecule, Phys. Rev. Lett., Volume 83 (1999), pp. 1066-1069

[38] J.M. Berger; S.J. Gamblin; S.C. Harrison; J.C. Wang Structure and mechanism of DNA topoisomerase II, Nature, Volume 379 (1996), pp. 225-232

[39] J.D. Watson; F.H.C. Crick Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature, Volume 171 (1953), pp. 737-738

[40] J.C. Wang Interaction between DNA and an escherichia coli protein ω, J. Mol. Biol., Volume 55 (1971), pp. 523-533

[41] L.F. Liu; C.C. Liu; B.M. Alberts Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-stranded break, Cell, Volume 19 (1980), pp. 697-707

[42] T. Hsieh Knotting of the circular duplex DNA by type II DNA topoisomerase from drosophila melanogaster, J. Biol. Chem., Volume 258 (1983), pp. 8413-8420

[43] J. Roca; J.C. Wang The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerase, Cell, Volume 71 (1992), pp. 833-840

[44] J. Roca; J.M. Berger; S.C. Harrison; J.C. Wang DNA transport by a type II topoisomerase: Direct evidence for a two-gate mechanism, Proc. Natl. Acad. Sci. USA, Volume 93 (1996), pp. 4057-4062

[45] V.V. Rybenkov; C. Ullsperger; A.V. Vologodskii; N.R. Cozzarelli Simplification of DNA topology below equilibrium values by type II topoisomerases, Science, Volume 277 (1997), pp. 690-693

[46] K. Kirkegaard; J.C. Wang Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop, J. Mol. Biol., Volume 185 (1985), pp. 625-637

[47] M. Drolet; X. Bi; L.F. Liu Hypernegative supercoiling of the DNA template during trancription elongation in vitro, J. Biol. Chem., Volume 269 (1994), pp. 2068-2074

[48] E. Masse Relaxation of transcription-driven negative supercoils is an essential function of e. coli topoisomerase I, J. Biol. Chem., Volume 274 (1999), pp. 16654-16658

[49] E. Masse E. coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoils, J. Biol. Chem., Volume 274 (1999), pp. 16659-16664

[50] M.D. Wang; M.J. Schnitzer; H. Yin; R. Landick; J. Gelles; S. Block Force and velocity measured for single molecules of RNA polymerase, Science, Volume 282 (1998), pp. 902-907

[51] N. Osheroff; E.R. Shelton; D.L. Brutlag DNA topoisomerase II from drosophila melanogaster: relaxation of supercoiled DNA, J. Biol. Chem., Volume 258 (1983), pp. 9536-9543

[52] N. Crisona; T.R. Strick; D. Bensimon; V. Croquette; N. Cozzarelli Preferential relaxation of positively supercoiled DNA by E.coli topoisomerase VI in single-molecule and ensemble measurements, Genes Developement, Volume 14 (2000), pp. 2881-2892

[53] M.D. Wang; M.J. Schnitzer; H. Yin; R. Landick; J. Gelles; S.M. Block Force and velocity measured for single molecules of RNA polymerase, Science, Volume 282 (1998), pp. 902-907

[54] W. Hua; E.C. Young; M.L. Fleming; J. Gelles Coupling of kinesin steps to ATP hydrolysis, Nature, Volume 388 (1997), pp. 390-393

[55] T.T. Harkins; J.E. Lindsley Pre-steady-state analysis of ATP hydrolysis by saccharomyces cerevisiae DNA topoisomerase II. 1. A DNA-dependent burst in ATP hydrolysis, Biochemistry, Volume 37 (1998), pp. 7292-7298

[56] T.T. Harkins; T.J. Lewis; J.E. Lindsley Pre-steady-state analysis of ATP hydrolysis by saccharomyces cerevisiae DNA topoisomerase II. 2. Kinetic mechanism for the sequential hydrolysis of two ATP, Biochemistry, Volume 37 (1998), pp. 7299-7312

[57] T. Strick; J.-F. Allemand; D. Bensimon; R. Lavery; V. Croquette Phase coexistence in a single DNA molecule, Physica A, Volume 263 (1999), pp. 392-404

[58] E.L. Zechiedrich; N. Osheroff Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers, EMBO J., Volume 9 (1990), pp. 4555-4562

[59] J. Roca; J.M. Berger; J.C. Wang On the simultaneous binding of eukaryotic DNA topoisomerase II to a pair of double-stranded DNA helices, J. Biol. Chem., Volume 268 (1993), pp. 14250-14255

[60] M.J. Schnitzer; S.M. Block Kinesin hydrolyses one ATP per 8-nm step, Nature, Volume 388 (1997), pp. 386-390

[61] M. Rief; R.S. Rock; A.D. Mehta; M.S. Mooseker; R.E. Cheney; J.A. Spudich Myosin-v stepping kinetics: A molecular model for processivity, Proc. Natl. Acad. Sci. USA, Volume 97 (2000) no. 17, pp. 9482-9486

[62] R.S. Rock; S.E. Rice; A.L. Wells; T.J. Purcell; J.A. Spudich; H.L. Sweeney Myosin vi is a processive motor with a large step size, Proc. Natl. Acad. Sci. USA, Volume 98 (2001) no. 24, pp. 13655-13659

[63] H. Hiasa; K.J. Marians Two distinct modes of strand unlinking during θ-type DNA replication, J. Biol. Chem., Volume 271 (1996), pp. 21529-21535

[64] J. Yan; M.O. Magnasco; J.F. Marko Kinetic proofreading mechanism for disentanglement of DNA by topoisomerases, Nature, Volume 401 (1999), pp. 932-935

[65] A.V. Vologodskii; W. Zhang; D. Subramanian; V.V. Rybenkov; D. Griffith; N.C. Cozzarelli Mechanism of topology simplification by type II DNA topoisomerases, Proc. Natl. Acad. Sci. USA, Volume 98 (2001), pp. 3045-3049

Cité par Sources :

Commentaires - Politique