[Observation des cycles enzymatiques des ADN topoisomérases par micromanipulation de molécules individuelles]
Dans cet article, nous décrivons des expériences sur des molécules individuelles utilisant des pinces magnétiques. Nous les utilisons pour caractériser les enzymes topoisomérases dont le rôle biologique est de démêler les molécules d'ADN. Dans un premier temps, l'élasticité d'une molécule d'ADN est mesurée en utilisant cette technique de micromanipulation. Nous montrons qu'il est facile de contrôler une contrainte de torsion sur une molécule d'ADN et que son effet sur son élasticité peut être mesuré avec précision. Nous décrivons ensuite l'observation de l'activité enzymatique à l'échelle de la molécule unique. Ceci nous permet d'accéder à la mesure des constantes réactionnelles de l'enzyme tel sa vitesse ou sa processivité. Nous passons en revue les résultats que nous avons obtenus en particulier sut la topoisomérase II, et nous montrons qu'il est possible d'enregistrer en temps réel les cycles de déroulement d'une molécule d'ADN sous torsion. Ceci nous permet une caractérisation précise de la biochimie de cette enzyme. La mesure directe des cycles enzymatiques ne peut se faire que lorsque le rapport signal sur bruit du dispositif expérimental est élevé. Nous discutons également les méthodes de traitement des données qui permettent d'accéder à la distribution des cycles enzymatiques en fonction de la qualité du rapport signal sur bruit.
In this article, we describe single-molecule assays using magnetic traps and we applied these assays to topoisomerase enzymes which unwind and disentangle DNA molecules. First, the elasticity of single DNA molecule is characterized using the magnetic trap. We show that a twisting constraint may be easily applied and that its effect upon DNA may be measured accurately. Then we describe how the topoisomerase activity may be observed at the single-molecule level giving direct access to the important biological parameters of the enzyme such as velocity and processivity. Furthermore, individual cycles of unwinding can be observed in real time. This permits an accurate characterization of the enzyme's biochemical cycle. The data treatment required to identify and analyze individual topoisomerization cycles will be presented in detail. This analysis is applicable to a wide variety of molecular motors.
Accepté le :
Publié le :
Mots-clés : micromanipulation, pinces magnetiques, topoisomerases
Terence R. Strick 1 ; Gilles Charvin 2 ; Nynke H. Dekker 2 ; Jean-François Allemand 2 ; David Bensimon 2 ; Vincent Croquette 2
@article{CRPHYS_2002__3_5_595_0, author = {Terence R. Strick and Gilles Charvin and Nynke H. Dekker and Jean-Fran\c{c}ois Allemand and David Bensimon and Vincent Croquette}, title = {Tracking enzymatic steps of {DNA} topoisomerases using single-molecule micromanipulation}, journal = {Comptes Rendus. Physique}, pages = {595--618}, publisher = {Elsevier}, volume = {3}, number = {5}, year = {2002}, doi = {10.1016/S1631-0705(02)01347-6}, language = {en}, }
TY - JOUR AU - Terence R. Strick AU - Gilles Charvin AU - Nynke H. Dekker AU - Jean-François Allemand AU - David Bensimon AU - Vincent Croquette TI - Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation JO - Comptes Rendus. Physique PY - 2002 SP - 595 EP - 618 VL - 3 IS - 5 PB - Elsevier DO - 10.1016/S1631-0705(02)01347-6 LA - en ID - CRPHYS_2002__3_5_595_0 ER -
%0 Journal Article %A Terence R. Strick %A Gilles Charvin %A Nynke H. Dekker %A Jean-François Allemand %A David Bensimon %A Vincent Croquette %T Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation %J Comptes Rendus. Physique %D 2002 %P 595-618 %V 3 %N 5 %I Elsevier %R 10.1016/S1631-0705(02)01347-6 %G en %F CRPHYS_2002__3_5_595_0
Terence R. Strick; Gilles Charvin; Nynke H. Dekker; Jean-François Allemand; David Bensimon; Vincent Croquette. Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation. Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 595-618. doi : 10.1016/S1631-0705(02)01347-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01347-6/
[1] Direct observation of kinesin stepping by optical trapping interferometry, Nature, Volume 365 (1993), pp. 721-727
[2] Single myosin molecule mechanics: piconewton forces and nanometre steps, Nature, Volume 368 (1994), pp. 113-119
[3] Direct observation of the rotation of F1-ATPase, Nature, Volume 386 (1997), pp. 299-302
[4] Le jokari moléculaire, Biofutur, Volume 190 (1999), pp. 26-30
[5] Adhesion force between individual ligand-receptor pairs, Science, Volume 264 (1994), pp. 415-417
[6] Unfolding pathways of individual bacteriorhodopsins, Science, Volume 286 (2000), pp. 143-146
[7] Applications of laser radiation pressure, Science, Volume 210 (1980), pp. 1081-1088
[8] Force generation of organelle transport measured in vivo by an infrared laser trap, Nature, Volume 348 (1990), pp. 346-348
[9] Biological applications of optical forces, Annu. Rev. Biophys. Biomol. Struct., Volume 23 (1994), pp. 247-285
[10] Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces, Biophys. J., Volume 68 (1995), pp. 2580-2587
[11] Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy, Nature, Volume 397 (1997), pp. 50-53
[12] Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, Volume 258 (1992), pp. 1122-1126
[13] Structure and mechanics of single biomolecules: Experiment and simulation, J. Phys. Condens. Matter, Volume 14 (2002), p. R383-R414
[14] The elasticity of a single supercoiled DNA molecule, Science, Volume 271 (1996), pp. 1835-1837
[15] The behavior of supercoiled DNA, Biophys. J., Volume 74 (1998), pp. 2016-2028
[16] Magnetic tweezers: micromanipulation and force measurement at the molecular level, Biophys. J. (2002) (to appear in June)
[17] Single kinesin molecules studied with a molecular force clamp, Nature, Volume 400 (1999), pp. 184-189
[18] F1-ATPase is a highly efficient molecular motor that rotates with discrete 120∘ steps, Cell, Volume 93 (1998), pp. 1117-1124
[19] On the relation between noise spectra and the distribution of time between steps for single molecular motors, Single Mol., Volume 3 (2002), pp. 43-48
[20] Statistical kinetics of processive enzymes, Cold Spring Harbor Symposia on Quantitative Biology, LX, 1995, pp. 793-801
[21] Fluctuations and supercoiling of DNA, Science, Volume 265 (1994), pp. 506-508
[22] Estimating the persistence length of a Worm-Like Chain molecule from force-extension measurements, Biophys. J., Volume 76 (1999), pp. 409-413
[23] DNA: an extensible molecule, Science, Volume 271 (1996), pp. 792-794
[24] Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules, Science, Volume 271 (1996), pp. 795-799
[25] Structure of plectonemically supercoiled DNA, J. Mol. Biol., Volume 213 (1990), pp. 931-951
[26] The twist, writhe and overall shape of supercoiled DNA change during couterion-induced transition from a loosely to a tightly interwound superhelix, J. Mol. Biol., Volume 235 (1994), pp. 825-847
[27] Self linking and the Gauss integral in higher dimensions, Amer. J. Math., Volume 91 (1969), pp. 693-728
[28] Understanding DNA, Academic Press, 1992
[29] Homologous pairing in streched supercoiled DNA, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 10579-10583
[30] Stretched and overwound DNA forms a Pauling-like structure with exposed bases, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 14152-14157
[31] Statistical mechanics of supercoiled DNA, Phys. Rev. E, Volume 52 (1995) no. 3, pp. 2912-2938
[32] Elasticity theory of a supercoiled DNA molecules, Phys. Rev. Lett., Volume 80 (1998), pp. 1556-1559
[33] Elasticity rod model of supercoiled DNA molecules (1999) | arXiv
[34] Torsional directed walks, entropic elasticity and DNA twist stiffness, Proc. Natl. Acad. Sci. USA, Volume 94 (1998), pp. 14418-14422
[35] Entropic elasticity of twist-storing polymers, Macromolecules, Volume 31 (1998), pp. 6333-6347
[36] Stress induced structural transitions in DNA and proteins, Annu. Rev. Biophys. Biomol. Struct., Volume 29 (2000), pp. 523-540
[37] Structural transitions of a twisted and stretched DNA molecule, Phys. Rev. Lett., Volume 83 (1999), pp. 1066-1069
[38] Structure and mechanism of DNA topoisomerase II, Nature, Volume 379 (1996), pp. 225-232
[39] Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature, Volume 171 (1953), pp. 737-738
[40] Interaction between DNA and an escherichia coli protein ω, J. Mol. Biol., Volume 55 (1971), pp. 523-533
[41] Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-stranded break, Cell, Volume 19 (1980), pp. 697-707
[42] Knotting of the circular duplex DNA by type II DNA topoisomerase from drosophila melanogaster, J. Biol. Chem., Volume 258 (1983), pp. 8413-8420
[43] The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerase, Cell, Volume 71 (1992), pp. 833-840
[44] DNA transport by a type II topoisomerase: Direct evidence for a two-gate mechanism, Proc. Natl. Acad. Sci. USA, Volume 93 (1996), pp. 4057-4062
[45] Simplification of DNA topology below equilibrium values by type II topoisomerases, Science, Volume 277 (1997), pp. 690-693
[46] Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop, J. Mol. Biol., Volume 185 (1985), pp. 625-637
[47] Hypernegative supercoiling of the DNA template during trancription elongation in vitro, J. Biol. Chem., Volume 269 (1994), pp. 2068-2074
[48] Relaxation of transcription-driven negative supercoils is an essential function of e. coli topoisomerase I, J. Biol. Chem., Volume 274 (1999), pp. 16654-16658
[49] E. coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoils, J. Biol. Chem., Volume 274 (1999), pp. 16659-16664
[50] Force and velocity measured for single molecules of RNA polymerase, Science, Volume 282 (1998), pp. 902-907
[51] DNA topoisomerase II from drosophila melanogaster: relaxation of supercoiled DNA, J. Biol. Chem., Volume 258 (1983), pp. 9536-9543
[52] Preferential relaxation of positively supercoiled DNA by E.coli topoisomerase VI in single-molecule and ensemble measurements, Genes Developement, Volume 14 (2000), pp. 2881-2892
[53] Force and velocity measured for single molecules of RNA polymerase, Science, Volume 282 (1998), pp. 902-907
[54] Coupling of kinesin steps to ATP hydrolysis, Nature, Volume 388 (1997), pp. 390-393
[55] Pre-steady-state analysis of ATP hydrolysis by saccharomyces cerevisiae DNA topoisomerase II. 1. A DNA-dependent burst in ATP hydrolysis, Biochemistry, Volume 37 (1998), pp. 7292-7298
[56] Pre-steady-state analysis of ATP hydrolysis by saccharomyces cerevisiae DNA topoisomerase II. 2. Kinetic mechanism for the sequential hydrolysis of two ATP, Biochemistry, Volume 37 (1998), pp. 7299-7312
[57] Phase coexistence in a single DNA molecule, Physica A, Volume 263 (1999), pp. 392-404
[58] Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers, EMBO J., Volume 9 (1990), pp. 4555-4562
[59] On the simultaneous binding of eukaryotic DNA topoisomerase II to a pair of double-stranded DNA helices, J. Biol. Chem., Volume 268 (1993), pp. 14250-14255
[60] Kinesin hydrolyses one ATP per 8-nm step, Nature, Volume 388 (1997), pp. 386-390
[61] Myosin-v stepping kinetics: A molecular model for processivity, Proc. Natl. Acad. Sci. USA, Volume 97 (2000) no. 17, pp. 9482-9486
[62] Myosin vi is a processive motor with a large step size, Proc. Natl. Acad. Sci. USA, Volume 98 (2001) no. 24, pp. 13655-13659
[63] Two distinct modes of strand unlinking during θ-type DNA replication, J. Biol. Chem., Volume 271 (1996), pp. 21529-21535
[64] Kinetic proofreading mechanism for disentanglement of DNA by topoisomerases, Nature, Volume 401 (1999), pp. 932-935
[65] Mechanism of topology simplification by type II DNA topoisomerases, Proc. Natl. Acad. Sci. USA, Volume 98 (2001), pp. 3045-3049
Cité par Sources :
Commentaires - Politique