David Bensimon 1 ; Vincent Croquette 1
@article{CRPHYS_2002__3_5_561_0, author = {David Bensimon and Vincent Croquette}, title = {Foreword}, journal = {Comptes Rendus. Physique}, pages = {561--567}, publisher = {Elsevier}, volume = {3}, number = {5}, year = {2002}, doi = {10.1016/S1631-0705(02)01348-8}, language = {en}, }
David Bensimon; Vincent Croquette. Foreword. Comptes Rendus. Physique, Volume 3 (2002) no. 5, pp. 561-567. doi : 10.1016/S1631-0705(02)01348-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01348-8/
[1] Laser manipulation of atoms and particles, Science, Volume 253 (1991), pp. 861-866
[2] Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, Volume 258 (1992), pp. 1122-1126
[3] Fluctuations and supercoiling of DNA, Science, Volume 265 (1994), pp. 506-508
[4] Direct observation of tube-like motion of a single polymer chain, Science, Volume 264 (1994), pp. 819-822
[5] Relaxation of a single DNA molecule observed by optical microscopy, Science, Volume 264 (1994), pp. 822-826
[6] Stretching of a single tethered polymer in a uniform flow, Science, Volume 268 (1995), pp. 83-87
[7] Reversible unfolding of individual titin immunoglobulin domains by AFM, Science, Volume 276 (1997), pp. 1109-1112
[8] Folding–unfolding transition in single titin molecules characterized with laser tweezers, Science, Volume 276 (1997), pp. 1112-1116
[9] Elasticity and unfolding of single molecules of the giant musle protein titin, Nature, Volume 387 (1997), pp. 308-312
[10] Direct observation of kinesin stepping by optical trapping interferometry, Nature, Volume 365 (1993), pp. 721-727
[11] Single myosin molecule mechanics: piconewton forces and nanometre steps, Nature, Volume 368 (1994), pp. 113-119
[12] Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution, Nature, Volume 374 (1995), pp. 555-559
[13] Direct observation of the rotation of F1-ATPase, Nature, Volume 386 (1997), pp. 299-302
[14] Single-molecule enzymatic dynamics, Science, Volume 282 (1998), pp. 1877-1882
[15] Review articles about: Physics at the scale of the cell, C. R. Acad. Sci. Paris, Sér. IV, Volume 2 (2001), pp. 799-877
[16] Adhesion force between individual ligand–receptor pairs, Science, Volume 264 (1994), pp. 415-417
[17] Sensing dicrete streptavidin–biotin interactions with atomic force microscopy, Langmuir, Volume 10 (1994), pp. 354-357
[18] The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy, Biophys. J., Volume 75 (1998), pp. 3008-3014
[19] Unfolding pathways of individual bacteriorhodopsins, Science, Volume 286 (2000), pp. 143-146
[20] Atomic force microscopy: A forceful way with single molecules, Curr. Biol., Volume 9 (1999), p. R133-R136
[21] DNA: an extensible molecule, Science, Volume 271 (1996), pp. 792-794
[22] RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 12295-12296
[23] Mechanical separation of the complementary strands of DNA, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), pp. 11935-11940
[24] Quantitative measurements of force and displacement using an optical trap, Biophys. J., Volume 70 (1996), pp. 1813-1822
[25] Transcription against a applied force, Science, Volume 270 (1995), pp. 1653-1657
[26] Single molecule force spectroscopy on polysaccharides by atomic force microscopy, Science, Volume 275 (1997), pp. 1295-1297
[27] Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water, New J. Phys., Volume 1 (1999), p. 6.1-6.11
[28] Sequence-dependent mechanics of single DNA molecules, Nat. Struct. Biol., Volume 6 (1999), pp. 346-349
[29] Force measurement by micromanipulation of a single actin by glass needles, Nature, Volume 334 (1988), pp. 74-76
[30] Molecular stick–slip revealed by opening DNA with piconewton force, Phys. Rev. Lett., Volume 79 (1997) no. 22, pp. 4489-4492
[31] Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules, Science, Volume 271 (1996), pp. 795-799
[32] Stretching DNA with optical tweezers, Biophys. J., Volume 72 (1997), pp. 1335-1346
[33] The elasticity of a single supercoiled DNA molecule, Science, Volume 271 (1996), pp. 1835-1837
[34] Magnetic tweezers: micromanipulation and force measurement at the molecular level, Biophys. J. (2002) (to appear in June)
[35] The behavior of supercoiled DNA, Biophys. J., Volume 74 (1998), pp. 2016-2028
[36] Structural transitions of a twisted and stretched DNA molecule, Phys. Rev. Lett., Volume 83 (1999), pp. 1066-1069
[37] Structural transitions in DNA driven by external force and torque, Phys. Rev. E., Volume 63 (2001), p. 051903.1-051903.10
[38] Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase, Nature, Volume 409 (2001), pp. 113-115
[39] Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping, C. R. Physique, Volume 3 (2002), pp. 569-584
[40] Mechanical opening of DNA by micro manipulation and force measurements, C. R. Physique, Volume 3 (2002), pp. 585-594
[41] Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation, C. R. Physique, Volume 3 (2002), pp. 595-618
[42] Single-molecule analysis of DNA uncoiling by a type II topoisomerase, Nature, Volume 404 (2000), pp. 901-904
[43] Single-molecule studies of the effect of template tension on T7 DNA polymerase activity, Nature, Volume 404 (2000), pp. 103-106
[44] Replication by a single DNA-polymerase of a stretched single strand DNA, Proc. Natl. Acad. Sci. USA, Volume 97 (2000), pp. 12002-12007
[45] Measurement of lactose repressor-mediated loop formation and breakdown in single DNA molecules, Science, Volume 267 (1995), pp. 378-380
[46] Force and velocity measured for single molecules of RNA polymerase, Science, Volume 282 (1998), pp. 902-907
[47] Single-molecule spectroscopy and microscopy, C. R. Physique, Volume 3 (2002), pp. 619-644
[48] Fluorescence microscopy of single autofluorescent proteins for cellular biology, C. R. Physique, Volume 3 (2002), pp. 645-656
[49] Single molecules, Science, Volume 283 (1999), pp. 1667-1694
[50] Motor Proteins: The Molecular Mechanics of Protein Machines, Sunderland, Massachusetts, 2000
[51] Modeling molecular motors, Rev. Mod. Phys., Volume 69 (1997), p. 1269
[52] Single-molecule studies of DNA mechanics, Curr. Opin. Struct. Biol., Volume 10 (2000) no. 3, pp. 279-285
[53] The way thing move: looking under the hood of molecular motor proteins, Science, Volume 288 (2000), pp. 88-95
[54] Grabbing the cat by the tail: manipulating molecules one by one, Nat. Rev. Mol. Cell. Biol., Volume 1–2 (2000), pp. 130-136
[55] The manipulation of single biomolecules, Phys. Today, Volume 54 (2001), pp. 46-51
[56] Structure and mechanics of single biomolecules: Experiment and simulation, J. Phys. Condens. Matter, Volume 14 (2002), p. R383-R414
[57] Single-molecule optomechanical cycle, Science, Volume 296 (2002), pp. 1103-1106
[58] The bacteriophage straight ∅29 portal motor can package DNA against a large internal force, Nature, Volume 413 (2001), pp. 748-752
[59] The ATP synthase – a splendid molecular machine, Annu. Rev. Biochem., Volume 66 (1997), pp. 717-749
[60] Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces, Biophys. J., Volume 68 (1995), pp. 2580-2587
Cité par Sources :
Commentaires - Politique