[Effets pathogènes d'un faible débit de dose : la relation « dose–effet »]
On ne connaı̂t pas d'effet pathogène induit chez l'homme par des faibles débits de dose jusqu'à 100 mSv par an. Les effets attribués aux faibles expositions sont le résultat d'extrapolations. La validité en est critiquée sur la base des observations épidémiologiques et des acquisitions récentes de la biologie cellulaire et moléculaire. L'accident de Tchernobyl a occasionné un excès important de cancers de la thyroïde chez les enfants ; il a conduit en outre à attribuer à l'exposition aux rayonnements ionisants des effets sanitaires réels dans des populations en détresse ; les enquêtes conduites révèlent cependant que ces phénomènes n'ont pas de relation avec l'intensité de l'exposition et sont imputables à la désorganisation sociale, aux carences et éventuellement à d'autres facteurs de l'environnement. Diverses hypothèses sont envisagées pour rendre compte de la prévalence augmentée de maladies non cancéreuses dans les groupes humains exposés à plus de 300 mSv.
There is no evidence of pathogenic effects in human groups exposed to less than 100 mSv at low dose-rate. The attributed effects are therefore the result of extrapolations from higher doses. The validity of such extrapolations is discussed from the point of view of epidemiology as well as cellular and molecular biology. The Chernobyl accident resulted in large excess of thyroid cancers in children; it also raised the point that some actual sanitary effects among distressed populations might be a direct consequence of low doses. Studies under the control of UN have not confirmed this point identifying no dose–effect relationship and “severe socio-economic and psychological pressures… poverty, poor diet and living conditions, and lifestyle factors” as the main cause for depressed health. Some hypothesis are considered for explaining the dose-dependence and high prevalence of non-cancer causes of death among human groups exposed to more than 300 mSv.
Accepté le :
Publié le :
Mots-clés : faibles débits de dose, cancer, effets pathogènes
Roland Masse 1
@article{CRPHYS_2002__3_7-8_1049_0, author = {Roland Masse}, title = {Pathogenic effects of low dose irradiation: dose{\textendash}effect relationships}, journal = {Comptes Rendus. Physique}, pages = {1049--1058}, publisher = {Elsevier}, volume = {3}, number = {7-8}, year = {2002}, doi = {10.1016/S1631-0705(02)01349-X}, language = {en}, }
Roland Masse. Pathogenic effects of low dose irradiation: dose–effect relationships. Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 1049-1058. doi : 10.1016/S1631-0705(02)01349-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01349-X/
[1] United Nations, Sources and effects of ionizing radiation United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly with scientific annexes, 1982
[2] United Nations, Sources and effects of ionizing radiation United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly with scientific annexes, 1993
[3] United Nations, Sources and effects of ionizing radiation United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly with scientific annexes, 2000
[4] United Nations, Sources and effects of ionizing radiation United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly with scientific annexes, 1994
[5] Growth Factors in the Pathogenesis of Radiation Effects in Normal Tissues (W. Dörr, ed.), Urban and Vogel, Munich, 2001 (78 p)
[6] Regulation of low level radiation, C. R. Acad. Sci. Paris, Sciences de la vie, Volume 322 (1999), pp. 241-243
[7] ICRP Publication 83. Risk estimation for multifactorial diseases, Annals of the ICRP 29 (3–4) (1999) 144
[8] Genetic monitoring of the human population from high-level natural radiation areas of Kerala on the southwest coast of India. Prevalence of congenital malformations in newborns, Radiat. Res., Volume 152 (1999), p. 149-153S
[9] Genetic monitoring of the human population from high level natural radiation areas of Kerala on the south-west coast of India incidence of numerical structural and chromosomal aberrations in the lymphocytes of newborns, Radiat. Res., Volume 152 (1999), p. 154-158S
[10] Fetal death and congenital malformation in babies born to nuclear industry employees: report from the nuclear industry family study, Lancet, Volume 356 (2000) no. 9238, pp. 1293-1299
[11] Human minisatellite rate after the Chernobyl accident, Nature, Volume 380 (1996), pp. 683-686
[12] Very high mutation rate in offspring of Chernobyl accident liquidators, Proc. Roy. Soc. London, Volume 268 (2000), pp. 1001-1005
[13] Children of Chernobyl cleanup workers do not show elevated rates of mutations in minisatellite alleles, Radiat. Res., Volume 155 (2001) no. 1, pp. 74-80
[14] Effects of radiation on children, Nature, Volume 383 (1996), p. 226
[15] Discovery of numerous clusters of spontaneous mutations in the specific locus test in mice necessitates major increases in estimates of doubling doses, Genetica, Volume 102/103 (1998), pp. 463-487
[16] Ionizing Radiation, Monographs on the Evaluation of Carcinogenic Risks to Humans, 75, IARC, Lyon, France, 2000
[17] BEIR V: Committee on the Biological Effects of Ionizing Radiation, Health effects of exposure to low levels of ionizing radiations, National US Academy of Sciences, National Research Council, Washington, 1990
[18] Population study in the high natural background radiation area in Kerala, India, Radiat. Res., Volume 152 (1999), p. S149-S153
[19] Cancer mortality in the high background radiation areas of Yangjiang, China during the period between 1979 and 1995, J. Radiat. Res. (Tokyo), Volume 41 (2000) no. Suppl, pp. 31-41
[20] National Council on Radiation Protection and Measurements, Evaluation of the linear non threshold model for ionizing radiation, NCRP 136, Bethesda, 2000
[21] Uncertainty analysis of the effective dose per unit exposure from radon progeny and implications for ICRP risk weighting factors, Radiat. Prot. Dosim., Volume 53 (1994), pp. 133-140
[22] ICRP publication 60, 1990 Recommendations of the International Commission on Radiological Protection, Annals of the ICRP 21 (1992) 1–3
[23] Threshold models in radiation carcinogenesis, Health Phys., Volume 75 (1998), pp. 241-250
[24] The effects of neutrons in Hiroshima. Implications for the risk estimates, C. R. Acad. Sci. Paris, Sciences de la vie, Volume 322 (1999), pp. 229-237
[25] Neutron RBE for induction of tumors with high lethality in Sprague–Dawley rats, Radiat. Res., Volume 154 (2000) no. 4, pp. 412-420
[26] R.E. Rowland, Radium in Humans, A Review of US Studies, ANL/ER-3 UC-408 Argonne National Laboratory, 1994
[27] et al. Effects of low doses and low dose-rates of external radiation: cancer mortality among nuclear industry workers in three countries, Radiat. Res., Volume 142 (1995), pp. 117-132
[28] J. Nucl. Medicine, 42 (2001) no. 9, pp. 26-32
[29] 100 years of observation on British radiologists: mortality from cancer and other causes 1897–1997, British J. Radiol., Volume 74 (2001), pp. 507-519
[30] Threshold dose response in radiation carcinogenesis: an approach from chronic β-irradiation experiments and a review of non-tumour doses, Int. J. Radiat. Biol. (2001)
[31] Radiation risks in perspective: radiation-induced cancer among cancer risks, Radiat. Environ. Biophys., Volume 39 (2000), pp. 3-16
[32] Biologic responses to low doses of ionizing radiation: detriment versus hormesis, J. Nucl. Medicine, Volume 42 (2001) no. 7, pp. 18-27
[33] Lymphocyte response in human population and its antioxidant protection against low doses of ionizing radiation, The Effects of Low and Very Low Doses, WONUC Conference, Elsevier, Amsterdam, 2000, pp. 295-304
[34] Adaptive response and induced resistance, C. R. Acad. Sci. Paris, Sciences de la vie, Volume 322 (1999), pp. 167-175
[35] Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose–response curve, Radiat. Res., Volume 153 (2000) no. 5 Pt 1, pp. 508-511
[36] Genes required for ionizing radiation resistance in yeast, Nat. Genet., Volume 29 (2001) no. 4, pp. 426-434
[37] Production of delayed death and neoplastic transformation in cgl1 cells by radiation-induced bystander effects, Radiat. Res., Volume 156 (2001) no. 3, pp. 251-258
[38] Individual variation in the production of a ‘bystander signal’ following irradiation of primary cultures of normal human urothelium, Carcinogenesis, Volume 22 (2001) no. 9, pp. 1465-1471
[39] Radiation risk to low fluences of alpha particles may be greater than we thought, Proc. Natl. Acad. Sci. USA, Volume 98 (2001) no. 25, pp. 144410-144415
[40] Hprt mutants induced in bystander cells by very low fluences of alpha particles result primarily from point mutations, Radiat. Res., Volume 156 (2001) no. 5, pp. 521-525
[41] Chernobyl effects worsening, says UN report, Lancet, Volume 355 (2000), p. 1625
[42] Psychological disorders and environmental pollution, Gesundheitwesen, Volume 63 (2001), pp. 79-84
[43] Sensitivity syndromes related to radiation exposures, Medical Hypotheses, Volume 57 (2001) no. 4, pp. 453-458
[44] et al. Studies of the mortality of atomic bomb survivors, Non cancer mortality: 1950–1990, Radiat. Res., Volume 152 (1999), pp. 374-389
[45] et al. First analysis of mortality and occupational radiation exposure based on the National Dose Registry of Canada, Am. J. Epidemiol., Volume 148 (1998) no. 6, pp. 1-11
[46] Evidence for a monoclonal origin of human atherosclerotic plaques, Proc. Natl. Acad. Sci. USA, Volume 70 (1973), pp. 1753-1756
[47] EEG patterns in persons exposed to ionizing radiation as a result of the Chernobyl accident: part 1: Cconventional EEG analysis, J. Neuropsychiatry Clin. Neurosci., Volume 13 (2001) no. 4, pp. 441-458
[48] Radiation–epidemiological analysis of incidence of non-cancer diseases among the Chernobyl liquidators, Health Phys., Volume 78 (2000) no. 5, pp. 495-501
Cité par Sources :
Commentaires - Politique