Comptes Rendus
Du combustible nucléaire aux déchets : recherches actuelles/From nuclear fuels to waste: current research
2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa)
[Des analogues naturels de sites de stockage de déchets nucléaires vieux de 2 milliards d'années : les réacteurs de fission nucléaire naturels du Gabon (Afrique)]
Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 839-849.

Two billion years ago, the increase of oxygen in atmosphere and the high 235U/238U uranium ratio (>3%) made possible the occurrence of natural nuclear reactors on Earth. These reactors are considered to be a good natural analogue for nuclear waste disposal. Their preservation during such a long period of time is mainly due to the geological stability of the site, the occurrence of clays surrounding the reactors and acting as an impermeable shield, and the occurrence of organic matter that maintained the environment in reducing conditions, favourable for the stability of uraninite. Hydrogeochemical studies and modelling have shown the complexity of the geochemical system at Oklo and Bangombé (Gabon) and the lack of precise data about uranium and fission products retention and migration mechanisms in geological environments.

Il y a 2 milliard d'années, les réacteurs nucléaires naturels du Gabon ont fonctionné grâce à l'augmentation de l'oxygène dans l'atmosphère et à un rapport 235U/238U de l'uranium élevé (>3 %) à cette époque. Ces réacteurs sont considérés comme de bon analogues naturels de site de stockage de déchets nucléaires. Leur préservation est due en grande partie à la stabilité géologique du site, la présence d'argiles entourant les réacteurs et constituant un bouclier imperméable et à la présence de matières organiques qui a maintenu un milieu réducteur favorable à la stabilité de l'uraninite. Les études hydrogéochimiques et les modélisations géochimiques mettent en évidence la complexité des systèmes géochimiques à Oklo et Bangombé et le manque de données précises sur les mécanismes de rétention et de migration de U et des produits de fission dans des environnements géologiques.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(02)01351-8
Keywords: natural nuclear reactors, natural analogue, Oklo, Bangombé, uranium, precambrian
Mots-clés : réacteurs nucléaires naturels, analogues naturels, Oklo, Bangombé, uranium, précambrien

François Gauthier-Lafaye 1

1 Centre de géochimie de la surface, UMR7517-CNRS-ULP, 1, rue Blessig, 67084 Strasbourg cedex, France
@article{CRPHYS_2002__3_7-8_839_0,
     author = {Fran\c{c}ois Gauthier-Lafaye},
     title = {2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in {Gabon} {(Africa)}},
     journal = {Comptes Rendus. Physique},
     pages = {839--849},
     publisher = {Elsevier},
     volume = {3},
     number = {7-8},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01351-8},
     language = {en},
}
TY  - JOUR
AU  - François Gauthier-Lafaye
TI  - 2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa)
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 839
EP  - 849
VL  - 3
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01351-8
LA  - en
ID  - CRPHYS_2002__3_7-8_839_0
ER  - 
%0 Journal Article
%A François Gauthier-Lafaye
%T 2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa)
%J Comptes Rendus. Physique
%D 2002
%P 839-849
%V 3
%N 7-8
%I Elsevier
%R 10.1016/S1631-0705(02)01351-8
%G en
%F CRPHYS_2002__3_7-8_839_0
François Gauthier-Lafaye. 2 billion year old natural analogs for nuclear waste disposal: the natural nuclear fission reactors in Gabon (Africa). Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 839-849. doi : 10.1016/S1631-0705(02)01351-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01351-8/

[1] R. Bodu; H. Bouzigues; N. Morin; J.P. Pfiffelmann C. R. Acad. Sci. Paris, 275 (1972), pp. 1731-1734

[2] F. Gauthier-Lafaye; F. Weber Econ. Geol., 84 (1989), pp. 2267-2285

[3] F.J. Dahlkamp Uranium Ore Deposits, Springer-Verlag, Berlin, 1993

[4] A.J. Gancarz Proc. The Natural Fission Reactors, IAEA, 1978, pp. 513-520

[5] J.C. Ruffenach Proc. The Natural Fission Reactors, IAEA, 1978, pp. 441-471

[6] P. Holliger C. R. Acad. Sci. Paris, 307 (1988), pp. 367-373

[7] R. Naudet, Oklo : des réacteurs nucléaires fossiles, Collection du Commissariat à l'Energie Atomique, Paris, 1991, 695 p

[8] F. Gauthier-Lafaye, Mémoire Sciences Géologiques, 78, 1986

[9] F. Gauthier-Lafaye; F. Weber C. R. Acad. Sci. Paris, 292 (1981), pp. 69-74

[10] R. Mathieu, Thesis, Institut National de Polytechnique de Lorraine, Nancy, 1999, 518 p

[11] R. Mathieu; L. Zetterström; M. Cuney; F. Gauthier-Lafaye; H. Hidaka Chem. Geol., 171 (2000), pp. 147-171

[12] H.D. Holland Early Life on Earth, Nobel Symposium N84 (S. Bengtson, ed.), Columbia University Press, New York, 1994, pp. 237-244

[13] F. Gauthier-Lafaye; F. Weber; H. Ohmoto Econ. Geol., 84 (1989), pp. 2286-2295

[14] F. Gauthier-Lafaye; P. Holliger; P.-L. Blanc Geochim. Cosmochim. Acta, 60 (1996), pp. 4831-4852

[15] F. Gauthier-Lafaye, E. Ledoux, J. Smellie, D. Louvat, V. Michaud, L. Pérez del Villar, V. Oversby, J. Bruno, OKLO-Natural Analogue Phase II. Behaviour of nuclear reaction products in a natural environment. European Commission. Nuclear Science and Technology Serie. Contract: FI4W-CT96-0020. Final report. EUR 19139 EN., 2000, 116 p

[16] L. Pourcelot; F. Gauthier-Lafaye Chem. Geol., 157 (1999), pp. 155-174

[17] B. Gerard; J.J. Royer; C. le Carlier; M. Pagel; H. Scius; F. Gauthier-Lafaye Proc. Sitges Meeting, 19–20 June 1997. Oklo Phase II Workshop (Louvat; von Maravic, eds.), EUR Report Series, 18314, 1997, pp. 301-308

[18] R. Bros; L. Turpin; F. Gauthier-Lafaye; Ph. Holliger; P. Stille Geochim. Cosmochim. Acta., 57 (1993), pp. 1351-1356

[19] R. Hagemann; M. Lucas; G. Nief; E. Roth Earth Planetary Sci. Lett., 23 (1974), pp. 170-176

[20] A. Gancarz; G. Cowan; D. Curtis; W. Maek, Scientific Basis for Nuclear Waste Management, 2, 1980, pp. 601-608

[21] H. Hidaka; K. Shinotsuka; P. Holliger Radiochim. Acta, 63 (1993), pp. 19-22

[22] H. Hidaka; P. Holliger; F. Gauthier-Lafaye Chem. Geol., 155 (1999), pp. 323-333

[23] D. Curtis; T. Benjamin; A. Gancarz; R. Loss; K. Rosman; J. DeLaeter; J.E. Demore; W.J. Maek Appl. Geochem., 4 (1989), pp. 49-62

[24] H. Hidaka; T. Sugiyama; M. Ebihara; P. Holliger Earth Planetary Sci. Lett., 122 (1994), pp. 173-182

[25] R. Bros; J. Carpena; V. Sere; A. Beltritti Radiochim. Acta, 74 (1996), pp. 277-282

[26] R. Bros; L. Turpin; F. Gauthier-Lafaye; Ph. Holliger; P. Stille Geochim. Cosmochim. Acta, 57 (1993), pp. 1351-1356

[27] K.A. Jensen; R.C. Ewing; F. Gauthier-Lafaye Scientific Basis for Nuclear Waste Management XX (W. Gray; I. Triay, eds.), Materials Research Society Symposium Proceedings, 465, 1997, pp. 1209-1218

[28] S. Salah, F. Gauthier-Lafaye, M. Del Nero, G. Bracke, in: European Commission, Nuclear Science and Technology, OKLO Working Group Proceedings of the Final Meeting OKLO-Natural Analogue Phase II Project held in Cadarache, France, from 20 to 21 May 1999, EUR 19137EN, 2000, pp. 75–90

[29] L. Pérez del Villar; J.S. Cozar; J. Pardillo; M.A. Labajos European Commission, Nuclear Science and Technology, EUR 19137 EN, 2000, pp. 45-74

[30] D. Louvat; K. Lot; J.-L. Michelot; J. Smellie; C. Tuniz European Commission, Nuclear Science and Technology, EUR19116 EN, 2000, pp. 391-398

[31] B. Madé; E. Ledoux; A.-L. Salignac; B. Le Boursicaud; I. Gurban C. R. Acad. Sci. Paris, 331 (2000), pp. 587-594

[32] S. Salah Thèse, Univ. Louis Pasteur, Strasbourg, 2000

[33] G. Bracke; S. Salah; F. Gauthier-Lafaye Environmental Geol., 40 (2001), pp. 403-408

[34] P. Stille; F. Gauthier-Lafaye; K.A. Jensen; S. Salah; G. Bracke; P. Gomez; R. Exing; D. Louvat Chem. Geol. (2001) (submitted)

[35] I. Casas; J. de Pablo; M.E. Torrero; J. Bruno; E. Cera; R.J. Finch; R.J. Ewing Geochim. Cosmochim. Acta, 62 (1998), pp. 2223-2231

[36] A.P. Meshik; K. Kehm; C.M. Hohenberg Geochim. Cosmochim. Acta, 64 (2000), pp. 1651-1661

[37] V. Michaud, D. Louvat, in: European Commission, Nuclear Science and Technology, EUR 19137EN, 2000, pp. 401–408

  • S. E. Bentridi; B. Gall; H. Hidaka; D. Benzaid; N. Amrani; F. Gauthier-Lafaye Investigation of clay and neutron absorbers’ roles in the genesis and evolution of Oklo natural nuclear reactors, The European Physical Journal Plus, Volume 138 (2023) no. 7 | DOI:10.1140/epjp/s13360-023-04279-5
  • Nathalie A. Wall; Emily Maulden; Elizabeth J. Gager; An T. Ta; R. Seaton Ullberg; Guanlin Zeng; Lorena Nava-Farias; Adam P. Sims; Juan C. Nino; Simon R. Phillpot; James E. Szecsody; Carolyn I. Pearce Functionalized Clays for Radionuclide Sequestration: A Review, ACS Earth and Space Chemistry, Volume 6 (2022) no. 11, p. 2552 | DOI:10.1021/acsearthspacechem.2c00098
  • Niels Burzan; Roberta Murad Lima; Manon Frutschi; Andrew Janowczyk; Bharti Reddy; Andrew Rance; Nikitas Diomidis; Rizlan Bernier-Latmani Growth and Persistence of an Aerobic Microbial Community in Wyoming Bentonite MX-80 Despite Anoxic in situ Conditions, Frontiers in Microbiology, Volume 13 (2022) | DOI:10.3389/fmicb.2022.858324
  • Khouloud Kthiri; Mohammed Mehnaoui; Samira Jebahi; Khaled Boughzala; Mustapha Hidouri Ionic Conductivity of Strontium Fluoroapatites Co-doped with Lanthanides, Mineralogy (2022) | DOI:10.5772/intechopen.102410
  • Frantz Ossa Ossa; Andrey Bekker; Axel Hofmann; Simon W. Poulton; Christophe Ballouard; Ronny Schoenberg Limited expression of the Paleoproterozoic Oklo natural nuclear reactor phenomenon in the aftermath of a widespread deoxygenation event  2.11–2.06 billion years ago, Chemical Geology, Volume 578 (2021), p. 120315 | DOI:10.1016/j.chemgeo.2021.120315
  • Eugene Shwageraus Light Water Reactors (LWR) Fuel Cycle Options, Encyclopedia of Nuclear Energy (2021), p. 757 | DOI:10.1016/b978-0-12-819725-7.00044-1
  • Fan Zhang; Yangquan Jiao; Liqun Wu; Hui Rong Roles of dispersed organic matters in sandstone-type uranium mineralization: A review of geological and geochemical processes, Ore Geology Reviews, Volume 139 (2021), p. 104485 | DOI:10.1016/j.oregeorev.2021.104485
  • Shan Yan; Dongyan Yang; Shuangqiang Chen; Juan Wen; Wenhao He; Shiyin Ji; Yue Xia; Yinlong Wang; Liangfu Zhou; Yuhong Li Structure and thermal expansion behavior of Ca4La6−xNdx(SiO4)4(PO4)2O2 apatite for nuclear waste immobilization, Dalton Transactions, Volume 49 (2020) no. 8, p. 2578 | DOI:10.1039/c9dt04915k
  • Frantz Ossa Ossa; Axel Hofmann; Christophe Ballouard; Clarisa Vorster; Ronny Schoenberg; Alina Fiedrich; Francis Mayaga-Mikolo; Andrey Bekker Constraining provenance for the uraniferous Paleoproterozoic Francevillian Group sediments (Gabon) with detrital zircon geochronology and geochemistry, Precambrian Research, Volume 343 (2020), p. 105724 | DOI:10.1016/j.precamres.2020.105724
  • K. Mohamed Cherif; A. Seghour; F.Z. Dehimi Criticality of the reaction zone 9 of Oklo reactors revisited, Applied Radiation and Isotopes, Volume 149 (2019), p. 165 | DOI:10.1016/j.apradiso.2019.04.018
  • Zelong Zhang; Léa Gustin; Weiwei Xie; Jie Lian; Kalliat T. Valsaraj; Jianwei Wang Effect of solution chemistry on the iodine release from iodoapatite in aqueous environments, Journal of Nuclear Materials, Volume 525 (2019), p. 161 | DOI:10.1016/j.jnucmat.2019.07.034
  • Mustapha Hidouri Sintering and ionic conduction of neodymium-bearing fluorobritholites, Materials Chemistry and Physics, Volume 228 (2019), p. 254 | DOI:10.1016/j.matchemphys.2019.02.050
  • Panagiotis Misaelides Clay minerals and zeolites for radioactive waste immobilization and containment, Modified Clay and Zeolite Nanocomposite Materials (2019), p. 243 | DOI:10.1016/b978-0-12-814617-0.00004-9
  • Mark J. Rigali Oklo Natural Nuclear Reactors, Encyclopedia of Geochemistry (2016), p. 1 | DOI:10.1007/978-3-319-39193-9_125-1
  • E. D. Davis; C. R. Gould; E. I. Sharapov Oklo reactors and implications for nuclear science, International Journal of Modern Physics E, Volume 23 (2014) no. 04, p. 1430007 | DOI:10.1142/s0218301314300070
  • C.R. Stanek; B.P. Uberuaga; B.L. Scott; R.K. Feller; N.A. Marks Accelerated chemical aging of crystalline nuclear waste forms, Current Opinion in Solid State and Materials Science, Volume 16 (2012) no. 3, p. 126 | DOI:10.1016/j.cossms.2012.01.002
  • Salah-Eddine BENTRIDI; Benoît GALL; François GAUTHIER-LAFAYE; Abdeslam SEGHOUR Monte-Carlo Based Numerical Modeling and Simulation of Criticality Conditions Occurrence in Natural Reactor Zone 9 in Oklo Deposit (Gabon), Progress in Nuclear Science and Technology, Volume 2 (2011) no. 0, p. 395 | DOI:10.15669/pnst.2.395
  • Mingxue Liu; Xiaofeng Pang; Mingxue Liu; Faqin Dong; Wei Zhang; Liangyu Hou, 2010 4th International Conference on Bioinformatics and Biomedical Engineering (2010), p. 1 | DOI:10.1109/icbbe.2010.5516785
  • Ch. Poinssot; C. Fillet; J. -M. Gras Post-containment performance of geological repository systems: source-term release and radionuclide migration in the near- and far-field environments, Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste (2010), p. 421 | DOI:10.1533/9781845699789.3.421
  • Bernard Bonin The Scientific Basis of Nuclear Waste Management, Handbook of Nuclear Engineering (2010), p. 3253 | DOI:10.1007/978-0-387-98149-9_28
  • Introduction, Waste Immobilization in Glass and Ceramic Based Hosts (2010), p. 1 | DOI:10.1002/9781444319354.ch1
  • Saeid Ghorbanzadeh Mashkani; Parisa Tajer Mohammad Ghazvini Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of biosorption, Bioresource Technology, Volume 100 (2009) no. 6, p. 1915 | DOI:10.1016/j.biortech.2008.10.019
  • PETR SOUDEK; ŠÁRKA VALENOVÁ; DAGMAR BENEŠOVÁ; TOMÁŠ VANĚK FROM LABORATORY EXPERIMENTS TO LARGE SCALE APPLICATION – AN EXAMPLE OF THE PHYTOREMEDIATION OF RADIONUCLIDES, Advanced Science and Technology for Biological Decontamination of Sites Affected by Chemical and Radiological Nuclear Agents, Volume 75 (2007), p. 139 | DOI:10.1007/978-1-4020-5520-1_9
  • Petr Soudek; Šárka Valenová; Zuzana Vavříková; Tomáš Vaněk 137Cs and 90Sr uptake by sunflower cultivated under hydroponic conditions, Journal of Environmental Radioactivity, Volume 88 (2006) no. 3, p. 236 | DOI:10.1016/j.jenvrad.2006.02.005
  • Kaye P. Hart Building Stakeholder Confidence by Reducing the Gulf between Experimental Data and Model Predictions in Assessments of Repository Performance, MRS Proceedings, Volume 824 (2004) | DOI:10.1557/proc-824-cc3.4

Cité par 25 documents. Sources : Crossref

Commentaires - Politique