[Mécanismes de migration des radionucléides d'un stockage de déchets radioactifs dans l'argile vers la surface]
Cet article constitue une revue critique des connaissances actuelles sur la migration des éléments en solution dans les milieux argileux. Les principaux mécanismes de migration dans les formations argileuses d'un bassin sédimentaire sont passés en revue : advection par compaction, convection thermique, migration par expulsion des hydrocarbures, mise en charge gravitaire, osmose, diffusion moléculaire, dispersion hydrodynamique. Les argiles du Callovo-Oxfordien du bassin de Paris, aux confins de la Meuse et de la Haute Marne, à Bure, où la France conduit des recherches sur la faisabilité d'un éventuel stockage de déchets radioactifs, sont données en exemple. Des travaux récents sur la distribution de l'hélium dans les aquifères du bassin de Paris permettent de confirmer l'importance du transfert par diffusion dans les séries argileuses. Les transferts dans les aquifères sont également décrits, et les principales causes d'incertitude des migrations sont précisées.
This article is a critical review of the current understanding of migration processes of solutes in clay. The major migration mechanisms are examined: advection through compaction, thermal convection, migration by hydrocarbon expulsion, gravitational flow, osmosis, molecular diffusion, hydrodynamic dispersion. Examples are taken from the Callovo-Oxfordian clays of the Paris basin in the Meuse/Haute Marne area, near Bure, where France is studying the feasibility of a potential nuclear waste disposal facility. Recent work on the helium distribution in the aquifers of the Paris Basin confirms the importance of molecular diffusion for solute transport in clays. Migration in aquifers is also described, and the major causes of uncertainties for solute migration are discussed.
Accepté le :
Publié le :
Mots-clés : argiles, compaction, diffusion, sorption, osmose, radionucléides, bassins sédimentaires
Ghislain de Marsily 1 ; Julio Gonçalvès 1 ; Sophie Violette 1 ; Maria-Clara Castro 2
@article{CRPHYS_2002__3_7-8_945_0, author = {Ghislain de~Marsily and Julio Gon\c{c}alv\`es and Sophie Violette and Maria-Clara Castro}, title = {Migration mechanisms of radionuclides from a clay repository toward adjacent aquifers and the surface}, journal = {Comptes Rendus. Physique}, pages = {945--959}, publisher = {Elsevier}, volume = {3}, number = {7-8}, year = {2002}, doi = {10.1016/S1631-0705(02)01385-3}, language = {en}, }
TY - JOUR AU - Ghislain de Marsily AU - Julio Gonçalvès AU - Sophie Violette AU - Maria-Clara Castro TI - Migration mechanisms of radionuclides from a clay repository toward adjacent aquifers and the surface JO - Comptes Rendus. Physique PY - 2002 SP - 945 EP - 959 VL - 3 IS - 7-8 PB - Elsevier DO - 10.1016/S1631-0705(02)01385-3 LA - en ID - CRPHYS_2002__3_7-8_945_0 ER -
%0 Journal Article %A Ghislain de Marsily %A Julio Gonçalvès %A Sophie Violette %A Maria-Clara Castro %T Migration mechanisms of radionuclides from a clay repository toward adjacent aquifers and the surface %J Comptes Rendus. Physique %D 2002 %P 945-959 %V 3 %N 7-8 %I Elsevier %R 10.1016/S1631-0705(02)01385-3 %G en %F CRPHYS_2002__3_7-8_945_0
Ghislain de Marsily; Julio Gonçalvès; Sophie Violette; Maria-Clara Castro. Migration mechanisms of radionuclides from a clay repository toward adjacent aquifers and the surface. Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 945-959. doi : 10.1016/S1631-0705(02)01385-3. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01385-3/
[1] Quantitative Hydrogeology, Groundwater Hydrology for Engineers, Academic Press, New York, 1986 (p. 440)
[2] Geodynamica Acta, 13 (2000), pp. 189-246
[3] J. Gonçalvès, Ph.D. Thesis, University Paris VI, 2002, to appear
[4] ANDRA, Dossier 2001 Argile, Rapport de synthèse, Parties A et B, Décembre 2001
[5] Adv. Hydrosci., 10 (1975), pp. 232-307
[6] , AAPG Memoirs, 70, 1998, pp. 35-63
(B.E. Law; G.F. Ulmishek; V.I. Slavin, eds.)[7] Nature, 403 (2000), pp. 182-184
[8] Hydrogeology J., 9 (2001), pp. 97-107
[9] J. Geophys. Res., 67 (1962) no. 13, pp. 5205-5213
[10] The Physics of Flow through Porous Media, University of Toronto Press, 1960
[11] Water Resources Res., 16 (1980) no. 5, pp. 901-917
[12] J. Hydrology, 120 (1990), pp. 341-358
[13] Water Resources Res., 34 (1998) no. 10, pp. 2443-2466
[14] Water Resources Res., 34 (1998) no. 10, pp. 2467-2483
[15] J. Soln. Chem., 9 (1980), pp. 895-909
[16] Nature, 397 (1999) no. 7, pp. 56-58
[17] C. R. Physique, 3 (2002), pp. 975-986
[18] Service Central de Sûreté des Installations Nucléaires, Secrétariat d'Etat à l'Industrie, Règle Fondamentale de Sûreté RFS.III.2.F sur le stockage des déchets nucléaires, 1993
[19] D. Patriarche, Ph.D. Thesis, Paris School of Mines, Fontainebelau, 2001
[20] 4th AGU Chapman Conference, Snowbird, Utah (1990) (abstract)
- Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems, Water Resources Research, Volume 53 (2017) no. 5, p. 3599 | DOI:10.1002/2016wr020172
- Quantification of the impact of paleoclimates on the deep heat flux of the Paris Basin, Geothermics, Volume 61 (2016), p. 35 | DOI:10.1016/j.geothermics.2016.01.006
- Chlorine transport processes through a 2000 m aquifer/aquitard system, Marine and Petroleum Geology, Volume 53 (2014), p. 102 | DOI:10.1016/j.marpetgeo.2013.12.013
- Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr, Journal of Volcanology and Geothermal Research, Volume 249 (2013), p. 1 | DOI:10.1016/j.jvolgeores.2012.09.006
- Establishing constraints on groundwater ages with 36Cl, 14C, 3H, and noble gases: A case study in the eastern Paris basin, France, Applied Geochemistry, Volume 25 (2010) no. 1, p. 123 | DOI:10.1016/j.apgeochem.2009.10.006
- What is the significance of pore pressure in a saturated shale layer?, Water Resources Research, Volume 46 (2010) no. 4 | DOI:10.1029/2009wr008090
- Chemical and isotopic characterization of hydrocarbon gas traces in porewater of very low permeability rocks: The example of the Callovo-Oxfordian argillites of the eastern part of the Paris Basin, Chemical Geology, Volume 260 (2009) no. 3-4, p. 269 | DOI:10.1016/j.chemgeo.2008.12.021
- Characterisation of pore water in crystalline rocks, Applied Geochemistry, Volume 23 (2008) no. 7, p. 1834 | DOI:10.1016/j.apgeochem.2008.02.007
- Chlorine transfer out of a very low permeability clay sequence (Paris Basin, France): 35Cl and 37Cl evidence, Geochimica et Cosmochimica Acta, Volume 69 (2005) no. 21, p. 4949 | DOI:10.1016/j.gca.2005.04.025
- Influence of local fluid flow on properties of low permeability Cretaceous siltstones (South-Eastern France): Implications for a nuclear waste deep repository, Journal of Geochemical Exploration, Volume 87 (2005) no. 1, p. 1 | DOI:10.1016/j.gexplo.2005.07.001
- Clay minerals in the Meuse-Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution, Clays and Clay Minerals, Volume 52 (2004) no. 5, p. 515 | DOI:10.1346/ccmn.2004.0520501
- Large‐scale hydraulic conductivities inferred from three‐dimensional groundwater flow and4He transport modeling in the Carrizo aquifer, Texas, Journal of Geophysical Research: Solid Earth, Volume 109 (2004) no. B11 | DOI:10.1029/2004jb003173
- Analytical and numerical solutions for alternative overpressuring processes: Application to the Callovo‐Oxfordian sedimentary sequence in the Paris basin, France, Journal of Geophysical Research: Solid Earth, Volume 109 (2004) no. B2 | DOI:10.1029/2002jb002278
Cité par 13 documents. Sources : Crossref
Commentaires - Politique