[Un modèle simple pour les verres structuraux]
This paper is an essay on mosaic structures in glasses, and their possible role in relaxation phenomena. (a) Near Tg the fluid is assumed to contain clusters, slightly more compact than the matrix: they cannot grow in size because of frustration effects, as noted by Kivelson and others. (Mode/mode coupling theories cannot describe this, because they do not incorporate frustration.) The size of the clusters corresponds to the Boson peak wavelength. (b) We propose that the standard free volume picture may be transposed: (i) clusters move rather than molecules, (ii) the required cavity space (‘vacancy’) for cluster motion is not empty, but filled with the low density matrix. (The old criticism against free volume based on pressure effects is thus removed.) (c) To reach one cluster, a ‘vacancy’ must hop through many ‘traps’: the distribution of hopping times ultimately leads to a stretched exponential for the relaxation, as argued by Bendler and Schlesinger.
Cet article discute certaines structures ‘mosaïques’ dans les verres minéraux ou organiques : (a) Près de la température de transition vitreuse Tg, le fluide contiendrait des « amas » compacts ; ceux-ci sont limités en taille par des effets de frustration, comme l'ont proposé Kivelson et al. (Les théories de couplage mode/mode ne peuvent pas bien décrire ces effets, car les corrélations à 2 points ne suffisent pas pour la frustration.) La taille des amas correspond à la longueur d'onde du pic de Bosons. (b) Nous proposons de transposer le modèle classique de volume libre : (i) ce sont les amas et non les molécules qui sont l'objet élémentaire, (ii) le volume de cavité nécessaire pour un saut n'est pas vide, mais est rempli par la matrice (de densité un peu plus basse). Les critiques formulées jadis contre le modèle du volume libre, à partir des effets de pression, sont ainsi éliminées. (c) Pour arriver jusqu'à un amas, une lacune doit sauter à travers de nombreux pièges : il y a une distribution des temps de saut qui conduit à une relaxation en exponentielle étirée, comme l'ont montré Bendler et Schlesinger.
Accepté le :
Publié le :
Mots-clés : verres structuraux, frustration, volume libre, inhomogénéités
Pierre-Gilles de Gennes 1
@article{CRPHYS_2002__3_9_1263_0, author = {Pierre-Gilles de~Gennes}, title = {A simple picture for structural glasses}, journal = {Comptes Rendus. Physique}, pages = {1263--1268}, publisher = {Elsevier}, volume = {3}, number = {9}, year = {2002}, doi = {10.1016/S1631-0705(02)01387-7}, language = {en}, }
Pierre-Gilles de Gennes. A simple picture for structural glasses. Comptes Rendus. Physique, Volume 3 (2002) no. 9, pp. 1263-1268. doi : 10.1016/S1631-0705(02)01387-7. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01387-7/
[1] J. Non-Cryst. Solids, 13 (1991), pp. 131-133
[2] Rep. Prog. Phys., 59 (1996), p. 1133
[3] Phys. Rev. Lett., 88 (2002), p. 55502
[4] J. Non-Cryst. Solids, 71 (1985), p. 203
[5] Ann. Rev. Phys. Chem., 51 (2000), p. 99
[6] Science, 274 (1996), p. 752
[7] Phys. Rev. Lett., 81 (1998), p. 2727
[8] Science, 292 (2001), p. 255
[9] Phys. A, 201 (1993), p. 183
[10] Phys. Rev. E, 61 (2000), p. 6909
[11] Phys. Rev. E, 64 (2001), p. 031503
[12] Macromolecules, 28 (1995), p. 7831
[13] J. Phys. Cond. Matt., 2 (1990), p. 10227
[14] C. R. Acad. Sci. Paris, Série IV, 2 (2001) no. 2, p. 285
[15] Phys. A, 219 (1995), p. 27
[16] Solid State Phys., 42 (1989), p. 1
[17] Frustration, Eyrolles, Paris, 2001
[18] J. Phys. (Paris) Lett., 40L (1979), p. 69
[19] Aspects of Structural Glass Transitions (J.P. Hansen; D. Levesque; J. Zinn-Justin, eds.), North-Holland, Amsterdam, 1991
[20] Phys. A, 226 (1996), p. 243
[21] Phys. Rev. B, 52 (1955), p. 3290
[22] J. Chem. Phys., 89 (1988), p. 6461
[23] Adv. Chem. Phys., 48 (1981), p. 436
[24] J. Statist. Phys., 53 (1988), p. 531
- Causes of the Unsolved Glassy State Problem: Incompleteness of the Atomic-Molecular Hard-Sphere Model, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4058907
- Progress of de Gennes soft matrix glass model in non-crystalline solids and disordered materials, Journal of Non-Crystalline Solids, Volume 565 (2021), p. 120851 | DOI:10.1016/j.jnoncrysol.2021.120851
- Photoluminescence of Point Defects in Silicon Dioxide by Femtosecond Laser Exposure, physica status solidi (a), Volume 218 (2021) no. 15 | DOI:10.1002/pssa.202000802
- Rigidity of protein structure revealed by incoherent neutron scattering, Biochimica et Biophysica Acta (BBA) - General Subjects, Volume 1864 (2020) no. 4, p. 129536 | DOI:10.1016/j.bbagen.2020.129536
- Correlation of Structure with Crystalline to Amorphous Phase Transitions of 1,3,6-Substituted Fulvene-Derived Molecular Glasses, The Journal of Organic Chemistry, Volume 85 (2020) no. 17, p. 11116 | DOI:10.1021/acs.joc.0c01014
- The Polycluster Theory for the Structure of Glasses: Evidence from Low Temperature Physics, Modern Problems of Molecular Physics, Volume 197 (2018), p. 291 | DOI:10.1007/978-3-319-61109-9_13
- Microalloying and the mechanical properties of amorphous solids, Philosophical Magazine, Volume 96 (2016) no. 14, p. 1399 | DOI:10.1080/14786435.2016.1163433
- Realistic tunnelling states for the magnetic effects in non-metallic real glasses, Philosophical Magazine, Volume 96 (2016) no. 7-9, p. 648 | DOI:10.1080/14786435.2015.1109717
- Viscous Flow of Glass-Forming Liquids and Glasses, Physics of Liquid Matter: Modern Problems, Volume 171 (2015), p. 103 | DOI:10.1007/978-3-319-20875-6_5
- Thermodynamic nature of vitrification in a 1D model of a structural glass former, The Journal of Chemical Physics, Volume 143 (2015) no. 4 | DOI:10.1063/1.4927303
- The order parameter of glass transition: Spontaneously delocalized nanoscale solitary wave with transverse ripplon-like soft wave, AIP Advances, Volume 3 (2013) no. 6 | DOI:10.1063/1.4811169
- The Order Parameter of Glass Transition and Instantaneous Spin Systems with De Gennes n = 0, Advances in Condensed Matter Physics, Volume 02 (2013) no. 02, p. 27 | DOI:10.12677/cmp.2013.22006
- Ein molekularer Blick auf die Heterogenität in Gläsern, Angewandte Chemie, Volume 125 (2013) no. 1, p. 174 | DOI:10.1002/ange.201205231
- Towards a Molecular View of Glass Heterogeneity, Angewandte Chemie International Edition, Volume 52 (2013) no. 1, p. 163 | DOI:10.1002/anie.201205231
- Pressure and temperature effects on intermolecular vibrational dynamics of ionic liquids, The Journal of Chemical Physics, Volume 138 (2013) no. 10 | DOI:10.1063/1.4793760
- Soft matrix and fixed point of Lennard-Jones potentials for different hard-clusters in size at glass transition, AIP Advances, Volume 2 (2012) no. 2 | DOI:10.1063/1.4704662
- Is there a connection between fragility of glass forming systems and dynamic heterogeneity/cooperativity?, Journal of Non-Crystalline Solids, Volume 357 (2011) no. 2, p. 351 | DOI:10.1016/j.jnoncrysol.2010.06.071
- The common physical origin of the glass transition, macromolecular entanglement and turbulence, Natural Science, Volume 03 (2011) no. 07, p. 580 | DOI:10.4236/ns.2011.37081
- Dynamic heterogeneities, boson peak, and activation volume in glass-forming liquids, Physical Review E, Volume 83 (2011) no. 6 | DOI:10.1103/physreve.83.061508
- Glass-Forming Substances and Systems, Relaxation and Diffusion in Complex Systems (2011), p. 49 | DOI:10.1007/978-1-4419-7649-9_2
- Universal 2D Soft Nano-Scale Mosaic Structure Theory for Polymers and Colloids, Soft Nanoscience Letters, Volume 01 (2011) no. 03, p. 86 | DOI:10.4236/snl.2011.13016
- Energy Gap Model of Glass Formers: Lessons Learned from Polymers, Modeling and Simulation in Polymers (2010), p. 433 | DOI:10.1002/9783527630257.ch10
- On mean coordination and structural heterogeneity in model amorphous solids, The Journal of Chemical Physics, Volume 132 (2010) no. 2 | DOI:10.1063/1.3284786
- Theory of Cluster Formation in Homopolymer Melts, Macromolecules, Volume 42 (2009) no. 17, p. 6761 | DOI:10.1021/ma9008324
- Gel-like elasticity in glass-forming side-chain liquid-crystal polymers, Physical Review E, Volume 80 (2009) no. 3 | DOI:10.1103/physreve.80.031801
- Molecular cooperativity in the dynamics of glass-forming systems: A new insight, The Journal of Chemical Physics, Volume 131 (2009) no. 19 | DOI:10.1063/1.3266508
- Micron-Sized Structure in a Thin Glycerol Film Revealed by Fluorescent Probes, The Journal of Physical Chemistry B, Volume 113 (2009) no. 48, p. 15724 | DOI:10.1021/jp9058388
- Soft glassy rheology of supercooled molecular liquids, Proceedings of the National Academy of Sciences, Volume 105 (2008) no. 13, p. 4993 | DOI:10.1073/pnas.0710032105
- Slow dynamics in glasses: A comparison between theory and experiment, Physical Review B, Volume 73 (2006) no. 10 | DOI:10.1103/physrevb.73.104206
- Commentary on “Solid-like rheological response of non-entangled polymers in the molten state” by H. Mendil etal., The European Physical Journal E, Volume 19 (2006) no. 1, p. 87 | DOI:10.1140/epje/e2006-00005-8
- Geometrical cluster ensemble analysis of random sphere packings, The Journal of Chemical Physics, Volume 125 (2006) no. 19 | DOI:10.1063/1.2390700
- On the role of frustration on the glass transition and polyamorphism of mesoscopically heterophase liquids, The Journal of Chemical Physics, Volume 125 (2006) no. 6 | DOI:10.1063/1.2238858
Cité par 32 documents. Sources : Crossref
Commentaires - Politique