Comptes Rendus
Organic Glass-Forming Liquids and the Concept of Fragility
[Les liquides organiques vitrifiables et le concept de fragilité]
Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 177-198.

Une catégorie importante de matériaux vitrifiables est de nature organique ; elle comprend les liquides moléculaires, les polymères, les solutions, les protéines qui peuvent être vitrifiés par refroidissement du liquide dans des conditions standard ou après des traitements thermiques spéciaux. La gamme d’applications est vaste, allant de la science des matériaux aux sciences de la vie et plus récemment à l’électronique. Afin de les distinguer des autres systèmes décrits dans ce numéro, certaines propriétés spécifiques telles que le domaine de température de transition vitreuse (T g ), leur capacité à former un verre et quelques règles empiriques pour localiser T g sont présentées. Cependant la propriété la plus remarquable de ces liquides, qui les distinguent des autres classes de matériaux, est la rapidité avec laquelle leur viscosité ou leur temps de relaxation structural augmente à l’approche de T g . Afin de caractériser ce comportement et de classer les liquides, C.A. Angell a introduit le concept de fragilité il y a près de 40 ans. Il a proposé de nommer les liquides comme fragiles ou forts dans un diagramme d’Arrhenius en fonction de T g /T (les plus forts n’ont jamais été observés pour les verres organiques, sauf l’eau sous des conditions particulières). La valeur de T g et la fragilité d’un liquide donné peuvent être modifiées en appliquant une pression, c’est-à-dire en changeant la densité. On peut alors explorer les propriétés du liquide surfondu et surcomprimé, et celles du verre dans un diagramme de phase P-T. La ligne de transition vitreuse correspond à une ligne isochrone, c’est-à-dire une ligne à temps de relaxation constant avec différents couples densité-température. Nous avons observé que toutes les données peuvent être placées sur des courbes maîtresses qui ne dépendent que d’une seule énergie d’activation effective, E (ρ) dépendante de la densité et de l’espèce et indépendante de la température. Un indice de fragilité isochore est défini comme une propriété intrinsèque d’un liquide donné qui peut aider à rationaliser toutes les corrélations entre les propriétés des verres en dessous de T g et le ralentissement visqueux juste au-dessus de T g . Le confinement géométrique des liquides est également un moyen de modifier la dynamique d’un liquide et les propriétés d’un verre ; il correspond à un grand nombre de situations rencontrées dans la nature. Un autre diagramme de phase T-d (d= diamètre des pores) peut être défini avec une dépendance non triviale de la transition vitreuse par rapport à la taille des pores, fortement affectée par les interactions de surface.

An important category of glass-forming materials is organic; it includes molecular liquids, polymers, solutions, proteins that can be vitrified by cooling the liquid under standard conditions or after special thermal treatments. The range of applications is large from materials to life sciences and recently to electronics. To distinguish them from other systems described in this issue, some specific properties such as the range of their glass transition temperature (T g ), their ability to vitrify and some rules of thumb to locate T g are presented. The most remarkable property of these liquids is how fast in temperature their viscosity or structural relaxation time increases as approaching T g . To characterize this behavior and rank the liquids of different strength, C.A. Angell introduced the concept of Fragility nearly 40 years ago. He proposed to classify liquids as fragile or strong in an Arrhenius plot with T g scaling (the strongest ones have never being observed in organic glasses, except for water under specific conditions). The T g value and the fragility index of a given liquid can be changed by applying pressure, i.e. changing the density. One can then explore the properties of the supercooled/overcompressed liquid and the glass in a P-T phase diagram. The T g line corresponds to an isochronic line, i.e. a line at constant relaxation time for different pairs of density-temperature. We observe that all data can be placed on master-curves that depend only on a single density- and species-dependent and T-independent effective interaction energy, E (ρ). An isochoric fragility index is defined as an intrinsic property of a given liquid, that can help in rationalizing all the correlations between the glass properties below T g and the viscous slowing down just above T g from which they are made. Geometrical confinement of liquids is also a way to modify the dynamics of a liquid and the properties of a glass; it corresponds to a large number of situations encountered in nature. Another phase diagram T-d (d defining pore size) can be defined with a non-trivial pore size dependence of the glass transition, which is also strongly affected by surface interactions.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.148
Keywords: molecular liquids and glasses, polymers, fragility, density scaling, correlations
Mot clés : liquides moléculaires et verres, polymères, fragilité, loi d’échelle en densité, corrélations entre dynamiques rapide et lente
Christiane Alba-Simionesco 1

1 Laboratoire Léon Brillouin, Université Paris-Saclay, CEA, CNRS, 91191, Gif-sur-Yvette, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S1_177_0,
     author = {Christiane Alba-Simionesco},
     title = {Organic {Glass-Forming} {Liquids} and the {Concept} of {Fragility}},
     journal = {Comptes Rendus. Physique},
     pages = {177--198},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S1},
     year = {2023},
     doi = {10.5802/crphys.148},
     language = {en},
}
TY  - JOUR
AU  - Christiane Alba-Simionesco
TI  - Organic Glass-Forming Liquids and the Concept of Fragility
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 177
EP  - 198
VL  - 24
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.148
LA  - en
ID  - CRPHYS_2023__24_S1_177_0
ER  - 
%0 Journal Article
%A Christiane Alba-Simionesco
%T Organic Glass-Forming Liquids and the Concept of Fragility
%J Comptes Rendus. Physique
%D 2023
%P 177-198
%V 24
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.148
%G en
%F CRPHYS_2023__24_S1_177_0
Christiane Alba-Simionesco. Organic Glass-Forming Liquids and the Concept of Fragility. Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 177-198. doi : 10.5802/crphys.148. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.148/

[1] C. Austen Angell Formation of glasses from liquids and biopolymers, Science, Volume 267 (1995) no. 5206, pp. 1924-1935 | DOI

[2] C. Austen Angell; J. M. Sare; E. J. Sare Glass Transition Temperatures for Simple Molecular Liquids and Their Binary Solutions, J. Phys. Chem., Volume 82 (1978) no. 24, p. 2622-–2629 | DOI

[3] Jeppe C. Dyre Colloquium: The glass transition and elastic models of glass-forming liquids, Rev. Mod. Phys., Volume 78 (2006) no. 3, pp. 952-972 | DOI

[4] M. Descamps; A. Aumelas; S. Desprez; J. F. Willart The amorphous state of pharmaceuticals obtained or transformed by milling: Sub-Tg features and rejuvenation, J. Non Cryst. Solids, Volume 407 (2015), pp. 72-80 | DOI

[5] Stephen R. Forrest; Mark E. Thompson Introduction: Organic Electronics and Optoelectronics, Chem. Rev., Volume 107 (2007) no. 4, pp. 923-925 | DOI

[6] M. D. Ediger; Peter Harrowell Perspective: Supercooled liquids and glasses, J. Chem. Phys., Volume 137 (2012), 080901 | DOI

[7] Adachi Keiichiro; Hiroshi Suga; Seki Syûzô Phase Changes in Crystalline and Glassy-Crystalline Cyclohexanol, Bull. Chem. Soc. Jpn., Volume 41 (1968) no. 5, pp. 1073-1087 | DOI

[8] F. Affouard; M. Descamps Analogy of the slow dynamics between the supercooled liquid and supercooled plastic crystal states of difluorotetrachloroethane, Phys. Rev. E, Volume 72 (2005) no. 1, 012501, 4 pages | DOI

[9] Tina Hecksher; Darius H. Torchinsky; Christoph Klieber; Jeremy A. Johnson; Jeppe C. Dyre; Keith A. Nelson Toward broadband mechanical spectroscopy, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 33, pp. 8710-8715 | DOI

[10] M. H. Jensen; C. Gainaru; Christiane Alba-Simionesco; Tina Hecksher; Kristine Niss Slow rheological mode in glycerol and glycerol-water mixtures, Phys. Chem. Chem. Phys., Volume 20 (2018) no. 3, pp. 1716-1723 | DOI

[11] Daniel Kivelson; Steven A. Kivelson; Xiaolin Zhao; Zohar Nussinov; Gilles Tarjus A thermodynamic theory of supercooled liquids, Physica A, Volume 219 (1995) no. 1, pp. 27-38 | DOI

[12] W. Götze; L. Sjögren Relaxation processes in supercooled liquids, Rep. Prog. Phys., Volume 55 (1992) no. 3, pp. 241-376 | DOI

[13] F. Fujara; B. Geil; H. Sillescu; G. Z. Fleischer Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition, Z. Physik B – Condensed Matter, Volume 88 (1992), pp. 195-204 | DOI

[14] Marcus T. Cicerone; M. D. Ediger Enhanced translation of probe molecules in supercooled o‐terphenyl: Signature of spatially heterogeneous dynamics?, J. Chem. Phys., Volume 104 (1996), pp. 7210-7218 | DOI

[15] P. Jacobsson; L. Börjesson; A. K. Hassan; L. M. Torell Reorientational motion of the NO3- ion through the liquid-glass transition in Ca0.4K0.6(NO3)1.4 and Ca(NO3)2 + 8H2O, J. Non Cryst. Solids, Volume 172–174 (1994), pp. 161-166 | DOI

[16] Peng Luo; Yanqin Zhai; Peter Falus; Victoria Garcia Sakai; Monika Hartl; Maiko Kofu; Kenji Nakajima; Faraone Antonio; Y. Z Q-dependent collective relaxation dynamics of glass-forming liquid Ca0.4K0.6(NO3)1.4 investigated by wide-angle neutron spin-echo, Nat. Commun., Volume 13 (2022) no. 1, 2092, 9 pages | DOI

[17] Fragility of Glass-forming Liquids (A. Lindsay Greer; Keith F. Kelton; Srikanth Sastry, eds.), Texts and Readings in the Physical Sciences (TRIPS), 13, Hindustan Book Angency, 2014 (Collection of article accompagnies the Symposium on Fragility held at JNCASR, Bengaluru, India, 2014)

[18] M. D. Ediger; C. Austen Angell; Sidney R. Nagel Supercooled liquids and glasses, J. Phys. Chem., Volume 100 (1996) no. 31, pp. 13200-13212 | DOI

[19] Walter Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures, Chem. Rev., Volume 43 (1948) no. 2, pp. 219-256 | DOI

[20] Julian H. Gibbs; Edmund A. DiMarzio Nature of the glass transition and the glassy state, J. Chem. Phys., Volume 28 (1958), pp. 373-383 | DOI

[21] Gerold Adam; Julian H. Gibbs On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys., Volume 43 (1965), pp. 139-146 | DOI

[22] Steven A. Kivelson; Gilles Tarjus In search of a theory of supercooled liquids, Nature Mater., Volume 7 (2008), pp. 831-833 | DOI

[23] Ludovic Berthier; Giulio Biroli Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011) no. 2, pp. 587-645 | DOI

[24] Vassiliy Lubchenko; Peter G. Wolynes Theory of Structural Glasses and Supercooled Liquids, Annu. Rev. Phys. Chem., Volume 58 (2007), pp. 235-266 | DOI

[25] Jacob D. Stevenson; Jörg Schmalian; Peter G. Wolynes The shapes of cooperatively rearranging regions in glass-forming liquids, Nature Phys. (2006), pp. 268-274 | DOI

[26] Gilles Tarjus An overview of the theories of the glass transition, Dynamical Heterogeneities and Glasses (Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; L. Cipelletti; W. van Saarloos, eds.) (International Series of Monographs on Physics), Volume 150, Oxford University Press, 2011, pp. 152-203

[27] Ranko Richert; Nathan Israeloff; Christiane Alba-Simionesco; François Ladieu; Denis L’Hôte Experimental Approaches to Heterogeneous Dynamics, Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, (L. Berthier; G. Biroli; J. P. Bouchaud, eds.) (International Series of Monographs on Physics), Volume 150, Oxford University Press, 2011, pp. 152-202 | DOI

[28] Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; L. Cipelletti; D. El Masri; Denis L’Hôte; François Ladieu; M. Pierno Direct experimental evidence of a growing length scale accompaying the glass transition, Science, Volume 310 (2005) no. 5755, pp. 1797-1800 | DOI

[29] Cécile Dalle-Ferrier; C. Thibierge; Christiane Alba-Simionesco; Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; François Ladieu; Denis L’Hôte; Gilles Tarjus Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence, Phys. Rev. E, Volume 76 (2007) no. 4, 041510 | DOI

[30] Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Gilles Tarjus Can the glass transition be explained without a growing static length scale?, J. Chem. Phys., Volume 150 (2019), 094501 | DOI

[31] W. A. Phillips Two-level states in glasses, Rep. Prog. Phys., Volume 50 (1987) no. 12, p. 1657 | DOI

[32] R. C. Zeller; R. O. Pohl Thermal conductivity and specific heat of noncrystalline solids, Phys. Rev. B, Volume 4 (1971) no. 6, pp. 2029-2041 | DOI

[33] D. A. Parshin; H. R. Schober; V. L. Gurevich Vibrational instability, two-level systems, and the boson peak in glasses, Phys. Rev. B, Volume 76 (2007) no. 6, 064206, 16 pages | DOI

[34] W. Schirmacher; Giancarlo Ruocco; Tullio Scopigno Acoustic attenuation in glasses and its relation with the Boson peak, Phys. Rev. Lett., Volume 98 (2007) no. 2, 025501, 4 pages | DOI

[35] F. Leonforte; A. Tanguy; J. P. Wittmer; J.-L. Barrat Continuum limit of amorphous elastic bodies II: Linear response to a point source force, Phys. Rev. B, Volume 70 (2004) no. 1 | DOI

[36] Frederic Casas; Christiane Alba-Simionesco; Helene Montes; François Lequeux Length-Scale of Glassy Polymer Plastic Flow: A Neutron Scattering Study, Macromolecules, Volume 41 (2008) no. 3, pp. 860-865 | DOI

[37] L. Hong; V. N. Novikov; Alexei P. Sokolov Dynamic heterogeneities, boson peak, and activation volume in glass-forming liquids, Phys. Rev. E, Volume 83 (2011) no. 6, 061508, 10 pages | DOI

[38] D. Fragiadakis; R. Casalini; C. M. Roland Comparing dynamic correlation lengths from an approximation to the four-point dynamic susceptibility and from the picosecond vibrational dynamics, Phys. Rev. E, Volume 84 (2011) no. 4, 042501, 4 pages | DOI

[39] Morrel H. Cohen; David Turnbull Molecular transport in liquids and glasses, J. Chem. Phys., Volume 31 (1959), pp. 1164-1169 | DOI

[40] David Chandler; Juan P. Garrahan Dynamics on the way to forming glass: Bubbles in space-time, Annu. Rev. Phys. Chem., Volume 61 (2010), pp. 191-217 | DOI

[41] C. Patrick Royall; Francesco Turci; Thomas Speck Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics, J. Chem. Phys., Volume 153 (2020), 090901 | DOI

[42] Geert Kapteijns; David Richard; Eran Bouchbinder; Thomas B. Schrøder; Jeppe C. Dyre; Edan Lerner Does mesoscopic elasticity control viscous slowing down in glassforming liquids?, J. Chem. Phys., Volume 155 (2021), 074502 | Zbl

[43] Jeppe C. Dyre; Niels Boye Olsen; Tage Christensen Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids, Phys. Rev. B, Volume 53 (1996) no. 5, pp. 2171-2174 | DOI

[44] Christiane Alba-Simionesco; Daniel Kivelson; Gilles Tarjus Thermodynamic properties of liquid toluene, J. Phys. Chem., Volume 92 (1988), pp. 487-489

[45] H. Vogel Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten, Phys. Zeit., Volume 22 (1921), pp. 645-646

[46] Gordon S. Fulcher Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc., Volume 8 (1925), pp. 339-355 | DOI

[47] G. Tammann Glasses as supercooled liquids, J. Soc. Glass Technol., Volume 9 (1925), pp. 166-185

[48] H. Bässler Viscous flow in supercooled liquids analyzed in terms of transport theory for random media with energetic disorder, Phys. Rev. Lett., Volume 58 (1987) no. 8, pp. 767-770 | DOI

[49] Tina Hecksher; Albena Nielsen; Niels Boye Olsen; Jeppe C. Dyre Little evidence for dynamic divergences in ultraviscous molecular liquids, Nature Phys., Volume 4 (2008), pp. 737-741 | DOI

[50] John C. Mauro; Yuanzhen Yue; Adam J. Ellison; Prabhat K. Gupta; Douglas C. Allan Viscosity of glass-forming liquids, Proc. Natl. Acad. Sci. USA, Volume 106 (2009) no. 47, pp. 19780-19784 | DOI

[51] V. N. Novikov; Alexei P. Sokolov Qualitative change in structural dynamics of some glass-forming systems, Phys. Rev. E, Volume 92 (2015) no. 6, 062304, 8 pages | DOI

[52] Soichi Tatsumi; Shintaro Aso; Osamu Yamamuro Thermodynamic study of simple molecular glasses: universal features in their heat capacity and the size of the cooperatively rearranging regions, Phys. Rev. Lett., Volume 109 (2012) no. 4, 045701, 5 pages | DOI

[53] Alexandra Simperler; Andreas Kornherr; Reenu Chopra; P. Arnaud Bonnet; William Jones; W. D. Samuel Motherwell; Gerhard Zifferer Glass Transition Temperature of Glucose, Sucrose, and Trehalose: An Experimental and in Silico Study, J. Phys. Chem. B, Volume 110 (2006) no. 39, pp. 19678-19684 | DOI

[54] Yrjö Roos Melting and glass transitions of low molecular weight carbohydrates, Carbohydr. Res., Volume 238 (1993), pp. 39-48 | DOI

[55] Sebastian Linnenkugel; Anthony H. J. Paterson; Lee M. Huffman; John E. Bronlund Prediction of the effect of water on the glass transition temperature of low molecular weight and polysaccharide mixtures, Food Hydrocolloids, Volume 128 (2022), 107573 | DOI

[56] K. D. Roe; T. P. Labuza Glass Transition and Crystallization of Amorphous Trehalose-sucrose Mixtures, Int. J. Food Prop., Volume 8 (2005) no. 3, pp. 559-574 | DOI

[57] Sebastian Linnenkugel; Anthony H. J. Paterson; Lee M. Huffman; John E. Bronlund Prediction of the effect of water on the glass transition temperature of low molecular weight and polysaccharide mixtures, Food Hydrocolloids, Volume 128 (2022), 107573 | DOI

[58] John D. Ferry Viscoelastic Properties of Polymers, John Wiley & Sons, 1980

[59] Bernhard Frick; D. Richter The microscopic basis of the GT in polymers from neutron scattering studies, Science, Volume 267 (1995) no. 5206, pp. 1939-1945 | DOI

[60] Simone Napolitano; Emmanouil Glynos; Nicholas B. Tito Glass transition of polymers in bulk, confined geometries, and near interfaces, Rep. Prog. Phys., Volume 80 (2017), 036602 | DOI

[61] Renxuan Xie; Albree R. Weisen; Youngmin Lee; Melissa A. Aplan; Abigail M. Fenton; Ashley E. Masucci; Fabian Kempe; Michael Sommer; Christian W. Pester; Ralph H. Colby; Enrique D. Gomez Glass transition temperature from the chemical structure of conjugated polymers, Nat. Commun., Volume 11 (2020), 893, 8 pages | DOI

[62] Yifu Ding; V. N. Novikov; Alexei P. Sokolov; Cécile Dalle-Ferrier; Christiane Alba-Simionesco; Bernhard Frick Influence of Molecular Weight on Fast Dynamics and Fragility of Polymer, Macromolecules, Volume 37 (2004) no. 24, pp. 9264-9272 | DOI

[63] Cécile Dalle-Ferrier; Kristine Niss; Alexei P. Sokolov; Bernhard Frick; Jorge Serrano; Christiane Alba-Simionesco The role of chain length in nonergodicity factor and fragility of polymers, Macromolecules, Volume 43 (2010) no. 21, pp. 8977-8984 | DOI | Zbl

[64] Gregory B. McKenna; Sindee L. Simon 50th Anniversary Perspective: Challenges in the Dynamics and Kinetics of Glass-Forming Polymers, Macromolecules, Volume 50 (2017) no. 17, pp. 6333-6361 | DOI

[65] Wen Ping; Daniel Paraska; Robert Baker; Peter Harrowell; C. Austen Angell Molecular Engineering of the Glass Transition: Glass-Forming Ability across a Homologous Series of Cyclic Stilbenes, J Phys. Chem. B, Volume 115 (2011) no. 16, pp. 4696-4702 | DOI

[66] W. Doster; A. Bachleitner; R. Dunau; M. Hiebi; E. Luscher Thermal properties of water in myoglobin crystals and solutions at subzero temperatures, Biophys. J., Volume 50 (1986) no. 2, pp. 213-219 | DOI | Zbl

[67] H. Frauenfelder; S. G. Sligar; P. C. Wolynes The energy landscapes and motions of proteins Science, Science, Volume 254 (1991) no. 5038, pp. 1598-1603 | DOI

[68] Bjarne F. Rasmussen; Ann M. Stock; Dagmar Ringe; Gregory A. Petsko Crystalline ribonuclease A loses function below the dynamical transition at 220 K, Nature, Volume 357 (1992), pp. 423-424 | DOI

[69] J. Smith; K Kuczera; M. Karplus Dynamics of myoglobin: Comparison of simulation results with neutron scattering spectra, Proc. Natl. Acad. Sci. USA, Volume 87 (1990) no. 4, pp. 1601-1605 | DOI

[70] David Turnbull; Morrel H. Cohen Concerning reconstructive transformation and formation of glass, J. Chem. Phys., Volume 29 (1958), pp. 1049-1054 | DOI

[71] Christiane Alba-Simionesco; J. Fan; C. Austen Angell Thermodynamic aspects of the glass transition phenomenon. Molecular liquids with variable interactions, J. Chem. Phys., Volume 110 (1999), pp. 5262-5272 | DOI

[72] Li-Min Wang; Ranko Richert Glass Transition Dynamics and Boiling Temperatures of Molecular Liquids and Their Isomers, J. Phys. Chem. B, Volume 111 (2007) no. 12, pp. 3201-3207 | DOI | Zbl

[73] Gilberte Dosseh; Yongde Xia; Christiane Alba-Simionesco Cyclohexane and benzene confined in MCM-41 and SBA-15: Confinement effects on freezing and melting, J. Phys. Chem. B, Volume 107 (2003) no. 26, pp. 6445-6453 | DOI

[74] M. D. Ediger; Peter Harrowell; L. Yu Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity, J. Chem. Phys., Volume 128 (2008), 034709, 6 pages | DOI

[75] Morineau Denis; Christiane Alba-Simionesco Hydrogen-bond-induced clustering in the fragile glassforming liquid m-toluidine: experiments and simulations, J. Chem. Phys., Volume 109 (1998), pp. 8494-8503 | DOI

[76] J. Hintermeyer; A. Herrmann; R. Kahlau; C. Goiceanu; E. Rossler Molecular Weight Dependence of Glassy Dynamics in Linear Polymers Revisited, Macromolecules, Volume 41 (2008) no. 23, pp. 9335-9344 | DOI

[77] Yifu Ding; V. N. Novikov; Alexei P. Sokolov; Cécile Dalle-Ferrier; Christiane Alba-Simionesco; Bernhard Frick Influence of Molecular Weight on Fast Dynamics and Fragility of Polymers, Macromolecules, Volume 37 (2004) no. 24, pp. 9264-9272 | DOI

[78] C. M. Roland; R. Casalini Temperature dependence of local segmental motion in polystyrene and its variation with molecular weight, J. Chem. Phys., Volume 119 (2003), pp. 1838-1842 | DOI

[79] A. Cailliaux; Christiane Alba-Simionesco; Bernhard Frick; L. Willner; I. Goncharenko Local structure and glass transition of polybutadiene up to 4 GPa, Phys. Rev. E, Volume 67 (2003) no. 1, 010802, 4 pages | DOI

[80] Christiane Alba-Simionesco Isothermal glass transitions in supercooled and overcompressed liquids, J. Chem. Phys., Volume 100 (1994), pp. 2250-2257 | DOI

[81] Bernhard Frick; Christiane Alba-Simionesco; K. H. Andersen; L. Willner Influence of Density and Temperature on the Microscopic Structure and the Segmental Relaxation of Polybutadiene, Phys. Rev. E, Volume 67 (2003) no. 5, 51801, 15 pages | DOI

[82] Christiane Alba-Simionesco; Cécile Dalle-Ferrier; Gilles Tarjus Effect of pressure on the number of dynamically correlated molecules when approaching the glass transition, 4th International Symposium on Slow Dynamics in Complex Systems (AIP Conference Proceedings), Volume 1518, American Institute of Physics, 2013, pp. 527-535 | DOI

[83] Maria Luisa Ferrer; C. Lawrence; B. G. Demirjian; Daniel Kivelson; Gilles Tarjus; Christiane Alba-Simionesco Supercooled liquids and the glass transition: Temperature as the control variable, J. Chem. Phys., Volume 109 (1998), pp. 8010-8015 | DOI | Zbl

[84] Christiane Alba-Simionesco; Daniel Kivelson; Gilles Tarjus Temperature, density, and pressure dependence of relaxation times in supercooled liquids, J. Chem. Phys., Volume 116 (2002), pp. 5033-5038 | DOI

[85] J. Dubochet; C. M. Alba; D. R. MacFarlane; C. Austen Angell; R. K. Kadiyala; M. Adrian; J. Teixeira Glass-forming microemulsions: vitrification of simple liquids and electron microscope probing of droplet-packing modes, J. Phys. Chem., Volume 88 (1984) no. 26, pp. 6727-6732 | DOI

[86] Mataz Alcoutlabi; Gregory B. McKenna Effect of confinement on material behaviour at the nanometre size scale, J. Phys.: Condens. Matter, Volume 17 (2005) no. 15, p. R461-R524 | DOI

[87] Christiane Alba-Simionesco; B. Coasne; Gilberte Dosseh; G. Dudziak; K. E. Gubbins; R. Radhakrishnan; M. Sliwinska-Bartkowiak Effects of confinement on freezing and melting, J. Phys.: Condens. Matter, Volume 18 (2006) no. 6, p. R15-R68 | DOI

[88] Gilberte Dosseh; Christelle Le Quellec; Nancy Brodie-linder; Christiane Alba-Simionesco; Wolfgang Haeussler; Pierre Levitz Fluid-wall interactions effects on the dynamical properties of confined oTP, J. Non Cryst. Solids, Volume 352 (2006) no. 42-49, pp. 4964-4968 | DOI

[89] C. Austen Angell Spectroscopy simulation and scattering, and the medium range order problem in glass, J. Non-Cryst. Solids, Volume 73 (1985) no. 1-3, pp. 1-17 | DOI

[90] W. T. Laughlin; D. R. Uhlmann Viscous flow in simple organic liquids, J. Phys. Chem., Volume 76 (1972) no. 16, pp. 2317-2325 | DOI

[91] D. L. Sidebottom Fifty years of fragility: A view from the cheap seats, J. Non-Cryst. Solids, Volume 524 (2019), 119641 | DOI

[92] Li-Min Wang; C. Austen Angell; Richert Ranko Fragility and thermodynamics in nonpolymeric glass-forming liquids, J. Chem. Phys., Volume 125 (2006), 074505 | DOI

[93] Ito Kaori; T. Moynihan Cornelius; C. Austen Angell Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water, Nature, Volume 398 (1999), pp. 492-495 | DOI

[94] Maria Luisa Ferrer; Hajime Sakai; Daniel Kivelson; Christiane Alba-Simionesco Extension of the Angell fragility concept, J. Phys. Chem. B, Volume 103 (1999) no. 20, pp. 4191-4196 | DOI

[95] Wang Li-Min; V. Velikov; C. Austen Angell Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities, J. Chem. Phys., Volume 117 (2002) no. 22, pp. 10184-10192 | DOI

[96] Jeppe C. Dyre; Niels Boye Olsen; Tage Christensen Local elastic expansion model for viscous low activation energies of glass-forming molecular liquids, Phys. Rev. B, Volume 53 (1996) no. 5, pp. 2171-2174 | DOI

[97] J. Souletie; D. Bertrand Glasses and spin glasses: a parallel, J. Phys. I, Volume 1 (1991) no. 11, pp. 1627-1637 | DOI

[98] Dinghai Huang; Gregory B. McKenna New insights into the fragility dilemma in liquids, J. Chem. Phys., Volume 114 (2001) no. 13, pp. 5621-5630 | DOI

[99] Sofiane Lansab; Philip Münzner; Zimmermann Herbert; Roland Böhmer Deuteron nuclear magnetic resonance and dielectric studies of molecular reorientation and charge transport in succinonitrile-glutaronitrile plastic crystals, J. Non Cryst. Solids, Volume 14 (2022), 100097 | DOI

[100] B. Schmidtke; N. Petzold; R. Kahlau; E. A. Rössler Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: From boiling point to glass transition temperature, J. Chem. Phys., Volume 139 (2013), 084504 | DOI

[101] Christiane Alba-Simionesco; Gilles Tarjus A perspective on the fragility of glass-forming liquids, Journal of Non-Crystalline Solids: X, Volume 14 (2022), 100100 | DOI

[102] E. Rossler; H. Sillescu 2H NMR Study of supercooled toluene, Chem. Phys. Lett., Volume 112 (1984), pp. 94-98 | DOI

[103] L. Ter Minassian; K. Bouzar; C. Alba-Simionesco 2H NMR Study of supercooled toluene, Chem. Phys. Lett., Volume 112 (1984), pp. 94-98

[104] G. Fytas; C. H. Wang; D. Lilge; T. Dorfmuller Homodyne light beating spectroscopy of o‐terphenyl in the supercooled liquid state, J. Chem. Phys., Volume 75 (1981), pp. 4247-4255 | DOI

[105] M. Naoki; S. Koeda Pressure-volume-temperature relations of liquid, crystal, and glass of o-terphenyl: excess amorphous entropies, and factors determining molecular mobility, J. Phys. Chem., Volume 93 (1989), pp. 948-955 | DOI

[106] K. U. Schug; H. E. King Jr.; R. Böhmer Fragility under pressure: Diamond anvil cell viscometry of ortho-terphenyl and salol, J. Chem. Phys., Volume 109 (1998), pp. 1472-1477 | DOI

[107] G. P. Johari; E. Whalley Dielectric Properties of Glycerol in the Range 0.1 105 Hz, 218357 K, 0-53 kbar, Faraday Symp. Chem. Soc., Volume 6 (1973), pp. 23-41 | DOI

[108] R. L. Cook; H. E. Jr. King; C. A. Herbst; D. R. Herschbach Pressure and temperature dependent viscosity of two glass forming liquids: Glycerol and dibutyl phthalate, J. Chem. Phys., Volume 100 (1994), pp. 5178-5189 | DOI

[109] A. J. Barlow; J. Lamb; A. J. Matheson Glass Transition Temperature and Density Scaling in Cumene at Very High Pressure, Proc. R. Soc. A, Volume 292 (1966), pp. 322-342

[110] G. Li; H. E. Jr. King; W. F. Oliver; C. A. Herbst; H. Z. Cummins Pressure and Temperature Dependence of Glass-Transition Dynamics in a “Fragile” Glass Former, Phys. Rev. Lett., Volume 74 (1995), pp. 2280-2283 | DOI

[111] Gilles Tarjus; Daniel Kivelson; S. Mossa; Christiane Alba-Simionesco Disentangling density and temperature effects in the viscous slowing down of glassforming liquids, J. Chem. Phys., Volume 120 (2004), pp. 6135-6141 | DOI

[112] Christiane Alba-Simionesco; A. Cailliaux-Chauty; A. Alegria; Gilles Tarjus Scaling out the density dependence of the α relaxation in glassforming polymers, Eur. Phys. Lett., Volume 68 (2004) no. 1, pp. 58-64 | DOI

[113] C. M. Roland; S. Hensel-Bielowka; M. Paluch; R. Casalini Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure, Rep. Prog. Phys., Volume 68 (2005), pp. 1405-1478 | DOI

[114] M. Paluch; S. Haracz; A. Grzybowski; M. Mierzwa; J. Pionteck; A. Rivera-Calzada; C. Leon A Relationship between Intermolecular Potential, Thermodynamics, and Dynamic Scaling for a Supercooled Ionic Liquid, J. Phys. Chem. Lett., Volume 1 (2010) no. 6, pp. 987-992 | DOI | Zbl

[115] Henriette Wase Hansen; Filippa Lundin; Karolina Adrjanowicz; Bernhard Frick; Alecksandar Matic; Kristine Niss Density scaling of structure and dynamics of an ionic liquid, Phys. Chem. Chem. Phys., Volume 22 (2020), pp. 14169-14176 | DOI

[116] Jeppe C. Dyre Isomorphs, hidden scale invariance, and quasiuniversality, Phys. Rev. E, Volume 88 (2013) no. 4, 042139, 9 pages | DOI

[117] Kristine Niss; Christiane Alba-Simionesco Effects of Density and Temperature effects on correlations between fragility and glassy properties, Phys. Rev. B, Volume 74 (2006) no. 2, 024205, 7 pages | DOI

[118] Alexei P. Sokolov; E. A. Rössler; A. Kisliuk; D. Quitmann Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties, Phys. Rev. Lett., Volume 71 (1993) no. 13, pp. 2062-2065 | DOI

[119] Tullio Scopigno; Giancarlo Ruocco; Francesco Sette; Giulio Monaco Is the fragility of a liquid embedded in the properties of its glass?, Science, Volume 302 (2003) no. 5646, pp. 849-852 | DOI

[120] V. N. Novikov; Alexei P. Sokolov Poisson’s ratio and the fragility of glass-forming liquids, Nature, Volume 431 (2004), pp. 961–-963 | DOI

[121] Asaph Widmer-Cooper; Peter Harrowell Predicting the Long-Time Dynamic Heterogeneity in a Supercooled Liquid on the Basis of Short-Time Heterogeneities, Phys. Rev. Lett., Volume 96 (2006) no. 18, 185701, 4 pages | DOI

[122] Kristine Niss; Cécile Dalle-Ferrier; Valentina M. Giordano; Giulio Monaco; Bernhard Frick; Christiane Alba-Simionesco Glassy properties and viscous slowing down: An analysis of the correlation between nonergodicity factor and fragility, J. Chem. Phys., Volume 129 (2008) no. 19, 194513 | DOI

[123] Kristine Niss; Cécile Dalle-Ferrier; Gilles Tarjus; Christiane Alba-Simionesco On the correlation between fragility and stretching in glass-forming liquids, J. Phys.: Condens. Matter, Volume 24 (2012) no. 5, 059501 | DOI

[124] Kristine Niss; Cécile Dalle-Ferrier; Bernhard Frick; Daniela Russo; Jeppe C. Dyre; Christiane Alba-Simionesco Connection between slow and fast dynamics of molecular liquids around the glass transition, Phys. Rev. E, Volume 82 (2010) no. 2, 021508, 8 pages | DOI

[125] U. Buchenau; R. Zorn A Relation Between Fast and Slow Motions in Glassy and Liquid Selenium, Eur. Phys. Lett., Volume 18 (1992) no. 6, pp. 523-528 | DOI

[126] Stephen F. Swallen; Kenneth L. Kearns; Marie K. Mapes; Yong Seol Kim; Robert J. McMahon; M. D. Ediger; Tian Wu; Lian Yu; Sushil Satija Organic glasses with exceptional thermodynamic and kinetic stability, Science, Volume 315 (2007) no. 5810, pp. 353-356 | DOI

[127] M. D. Ediger Perspective: Highly stable vapor-deposited glasses, J. Chem. Phys., Volume 147 (2017) no. 21, 210901 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The glass transition in molecules, colloids and grains: universality and specificity

Olivier Dauchot; François Ladieu; C. Patrick Royall

C. R. Phys (2023)


From everyday glass to disordered solids: Foreword

Jean-Louis Barrat; Daniel R. Neuville

C. R. Phys (2023)


The RFOT Theory of Glasses: Recent Progress and Open Issues

Giulio Biroli; Jean-Philippe Bouchaud

C. R. Phys (2023)