Comptes Rendus
Mécanismes physiques du nuage d'orage et de l'éclair/The physics of thundercloud and lightning discharge
A new model of charge transfer during ice–ice collisions
[Un nouveau modèle décrivant le transfert de charge lors d'une collision entre particules de glace]
Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1293-1303.

Nous présentons un model décrivant l'échange de charge électrique entre deux particules de glace qui entrent en collision et se séparent. Nous calculons la distribution de charge près de la surface d'une particule de glace, soit en état d'équilibre, soit pendant la croissance ou sublimation. Sur la base de considérations géométriques simples mais plausibles, nous calculons la masse d'eau fondue sous l'effet de la pression au point de contact, et nous supposons que le transfert de charge électrique associé s'effectue à partir de la particule à plus faible rayon de courbure. Les predictions du modèle sont globalement en accord avec les observations de plusieurs laboratoires.

We present a new model of charge transfer between two particles of ice that collide and then rebound. We calculate the charge distribution near the surface of an ice particle both in equilibrium and during growth or sublimation. Using simplified but plausible geometrical descriptions of the colliding surfaces we calculate the mass that is melted by the excess pressure at the point of contact, and we assume that electric charge is transferred from the sharper to the flatter particle with the melted material. Our predictions are in semiquantitative agreement with charge transfer measurements from several laboratories.

Publié le :
DOI : 10.1016/S1631-0705(02)01408-1
Keywords: electrification, thunderstorms, ice surface, charge transfer
Mot clés : électrisation, orages, surface de glace, transfert de charge électrique
Marcia Baker 1 ; Jon Nelson 2

1 Depts of Earth and Space Science and Atmospheric Sciences, University of Washington, Seattle, WA 98195-1310, USA
2 Nelson Scientific, 7-13-8 Oginosato Higashi Otsu, Shiga 520-0248, Japan
@article{CRPHYS_2002__3_10_1293_0,
     author = {Marcia Baker and Jon Nelson},
     title = {A new model of charge transfer during ice{\textendash}ice collisions},
     journal = {Comptes Rendus. Physique},
     pages = {1293--1303},
     publisher = {Elsevier},
     volume = {3},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01408-1},
     language = {en},
}
TY  - JOUR
AU  - Marcia Baker
AU  - Jon Nelson
TI  - A new model of charge transfer during ice–ice collisions
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 1293
EP  - 1303
VL  - 3
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01408-1
LA  - en
ID  - CRPHYS_2002__3_10_1293_0
ER  - 
%0 Journal Article
%A Marcia Baker
%A Jon Nelson
%T A new model of charge transfer during ice–ice collisions
%J Comptes Rendus. Physique
%D 2002
%P 1293-1303
%V 3
%N 10
%I Elsevier
%R 10.1016/S1631-0705(02)01408-1
%G en
%F CRPHYS_2002__3_10_1293_0
Marcia Baker; Jon Nelson. A new model of charge transfer during ice–ice collisions. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1293-1303. doi : 10.1016/S1631-0705(02)01408-1. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01408-1/

[1] J. Latham The electrification of thunderstorms, Q. J. Roy. Met. Soc., Volume 107 (1961), pp. 277-298

[2] A.J. Illingworth Charge separation in thunderstorms: small scale processes, J. Geophys. Res., Volume 90 (1985), pp. 6026-6032

[3] C.P.R. Saunders Thunderstorm electrification experiments and charging mechanisms, J. Geophys. Res., Volume 99 (1994), pp. 10773-10779

[4] E.R. Jayaratne; C.P.R. Saunders; J. Hallett Laboratory studies of the charging of soft-hail during ice crystal interaction, Q. J. Roy. Met. Soc., Volume 109 (1983), pp. 609-630

[5] B. Baker et al. The influence of diffusional growth rates on the charge tranfer accompanying rebounding collisions between ice crystals and hailstones, Q. J. Roy. Met. Soc., Volume 113 (1987), pp. 1193-1215

[6] T. Takahashi Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci., Volume 35 (1978), pp. 1536-1548

[7] J.P. Rydock; E. Williams Charge separation associated with frost growth, Q. J. Roy. Met. Soc., Volume 117 (1991), pp. 409-420

[8] E.E. Avila et al. Charging in ice–ice collisions as a function of the ambient temperature and the larger particle average temperature, J. Geophys. Res., Volume 101 (1996), pp. 29609-29614

[9] B. Mason; J.G. Dash Charge and mass transfer in ice–ice collisions: experimental observations of a mechanism in thunderstorm electrification, J. Geophys. Res., Volume 105 (2000), pp. 10185-10192

[10] P. Berdeklis; R. List The ice crystal–graupel collision charging mechanism of thunderstorm electrification, J. Atmos. Sci., Volume 58 (2001), pp. 2751-2770

[11] J. Helsdon et al. An examination of thunderstorm charging mechanisms using a two-dimensional storm electrification model, J. Geophys. Res., Volume 106 (2001) no. D1, pp. 1165-1192

[12] J. Latham; B.J. Mason Electric charge transfer associated with temperature gradients in ice, Proc. Roy. Soc. A, Volume 260 (1961), pp. 523-536

[13] E.J. Workman; S.E. Reynolds Electric phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity, Phys. Rev., Volume 78 (1950), pp. 254-259

[14] M.B. Baker; J.G. Dash Mechanism of charge transfer between colliding ice particles in thunderstorms, J. Geophys. Res., Volume 99 (1994), pp. 10621-10626

[15] A. Graciaa; P. Creux; J. Lachaise; R. Schechter Charge transfer between colliding hydrometeors: role of surface tension gradients, J. Geophys. Res., Volume 106 (2001) no. D8, pp. 7967-7972

[16] T. Takahashi Electric surface potential of growing ice crystals, J. Atmos. Sci., Volume 27 (1970), pp. 453-562

[17] J.G. Dash; B.L. Mason; J.S. Wettlaufer Theory of charge and mass transfer in ice–ice collisions, J. Geophys. Res., Volume 106 (2001), pp. 20395-20402

[18] J.M. Caranti; A.J. Illingworth Frequency dependence of the surface conductivity of ice, J. Phys. Chem., Volume 87 (1983), pp. 4078-4083

[19] N. Maeno Measurements of surface and volume conductivities of single ice crystals (E. Whalley et al., eds.), Physics and Chemistry of Ice, Royal Society of Canada, Ottawa, 1973, pp. 140-143

[20] T. Huthwelker; D. Lamb; M.B. Baker; B.D. Swanson; Th. Peter Uptake of SO2 by polycrystalline water ice, J. Coll. Interf. Sci., Volume 238 (2001), pp. 147-159

[21] P.V. Hobbs Ice Physics, Academic Press, 1974

[22] C. Jaccard Thermoelectric effects in ice crystals I. Theory of the steady state, Phys. Kondens. Materie, Volume 1 (1964), pp. 143-151

[23] L. Landau; E.M. Lifshitz Theory of Elasticity, Vol. 7, Course of Theoretical Physics, Pergamon Press, 1959 (Section 9, Problem 1)

[24] W. Gaskell; A.J. Illingworth Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification, Q. J. Roy. Met. Soc., Volume 106 (1980), pp. 841-854

[25] V.F. Petrenko; R.W. Whitworth Physics of Ice, Oxford University Press, Oxford, 1999

[26] N. Fletcher Surface structure of water and ice. II. A revised model, Phil. Mag., Volume 18 (1968), pp. 1287-1300

[27] V.F. Petrenko; I.A. Ryzhkin Surface states of charge carriers and electrical properties of the surface layer of ice, J. Phys. Chem. B, Volume 101 (1997), pp. 6285-6289

[28] M. Higa; M. Arakawa; N. Maeno Size dependence of restitution coefficients of ice in relation to collision strength, Icarus, Volume 133 (1998), pp. 310-320

[29] Y. Kishimoto; M. Maruyama Growth of ice Ih in water and measurements of its melting curve, Rev. High Pressure Sci. Technol., Volume 7 (1998), pp. 1144-1146

[30] H.R. Pruppacher; J.D. Klett Microphysics of Clouds and Precipitation, Kluwer Academic, Norwell, MA, 1997

[31] C.R. Saunders; S.L. Peck; G.G. Aguirre Varela; E.E. Avila; N.E. Castellano A laboratory study of the influence of water vapour and mixing on the charge transfer process during collisions between ice crystals and graupel, Atmos. Res., Volume 58 (2001), pp. 187-203

[32] T. Takahashi et al. Vapor diffusional growth of free-falling snow crystals between −3 and −23 °C, J. Met. Soc. Japan, Volume 69 (1991), pp. 15-30

[33] W.D. Keith; C.P.R. Saunders Charging of aircraft: high-velocity collisions, J. Aircraft, Volume 27 (1990), pp. 218-222

[34] W.D. Scott; Z. Levin The effect of potential gradients on the charge separation during interactions of snow crystals with an ice sphere, J. Atmos. Sci., Volume 27 (1970), pp. 463-473

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Reply to the comment on “A new model of charge transfer during ice–ice collisions” [C. R. Physique 4 (2003) 721–722]

Marcia Baker; John Nelson

C. R. Phys (2003)


Some microphysical and electrical aspects of a Cloud Resolving Model: description and thunderstorm case study

Gilles Molinié; Jean-Pierre Pinty; Frank Roux

C. R. Phys (2002)


Comment on “A new model of charge transfer during ice–ice collisions” [C. R. Physique 3 (2002) 1293–1303]

J.Greg Dash; John S. Wettlaufer

C. R. Phys (2003)