[Un nouveau modèle décrivant le transfert de charge lors d'une collision entre particules de glace]
Nous présentons un model décrivant l'échange de charge électrique entre deux particules de glace qui entrent en collision et se séparent. Nous calculons la distribution de charge près de la surface d'une particule de glace, soit en état d'équilibre, soit pendant la croissance ou sublimation. Sur la base de considérations géométriques simples mais plausibles, nous calculons la masse d'eau fondue sous l'effet de la pression au point de contact, et nous supposons que le transfert de charge électrique associé s'effectue à partir de la particule à plus faible rayon de courbure. Les predictions du modèle sont globalement en accord avec les observations de plusieurs laboratoires.
We present a new model of charge transfer between two particles of ice that collide and then rebound. We calculate the charge distribution near the surface of an ice particle both in equilibrium and during growth or sublimation. Using simplified but plausible geometrical descriptions of the colliding surfaces we calculate the mass that is melted by the excess pressure at the point of contact, and we assume that electric charge is transferred from the sharper to the flatter particle with the melted material. Our predictions are in semiquantitative agreement with charge transfer measurements from several laboratories.
Mot clés : électrisation, orages, surface de glace, transfert de charge électrique
Marcia Baker 1 ; Jon Nelson 2
@article{CRPHYS_2002__3_10_1293_0, author = {Marcia Baker and Jon Nelson}, title = {A new model of charge transfer during ice{\textendash}ice collisions}, journal = {Comptes Rendus. Physique}, pages = {1293--1303}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01408-1}, language = {en}, }
Marcia Baker; Jon Nelson. A new model of charge transfer during ice–ice collisions. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1293-1303. doi : 10.1016/S1631-0705(02)01408-1. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01408-1/
[1] The electrification of thunderstorms, Q. J. Roy. Met. Soc., Volume 107 (1961), pp. 277-298
[2] Charge separation in thunderstorms: small scale processes, J. Geophys. Res., Volume 90 (1985), pp. 6026-6032
[3] Thunderstorm electrification experiments and charging mechanisms, J. Geophys. Res., Volume 99 (1994), pp. 10773-10779
[4] Laboratory studies of the charging of soft-hail during ice crystal interaction, Q. J. Roy. Met. Soc., Volume 109 (1983), pp. 609-630
[5] et al. The influence of diffusional growth rates on the charge tranfer accompanying rebounding collisions between ice crystals and hailstones, Q. J. Roy. Met. Soc., Volume 113 (1987), pp. 1193-1215
[6] Riming electrification as a charge generation mechanism in thunderstorms, J. Atmos. Sci., Volume 35 (1978), pp. 1536-1548
[7] Charge separation associated with frost growth, Q. J. Roy. Met. Soc., Volume 117 (1991), pp. 409-420
[8] et al. Charging in ice–ice collisions as a function of the ambient temperature and the larger particle average temperature, J. Geophys. Res., Volume 101 (1996), pp. 29609-29614
[9] Charge and mass transfer in ice–ice collisions: experimental observations of a mechanism in thunderstorm electrification, J. Geophys. Res., Volume 105 (2000), pp. 10185-10192
[10] The ice crystal–graupel collision charging mechanism of thunderstorm electrification, J. Atmos. Sci., Volume 58 (2001), pp. 2751-2770
[11] et al. An examination of thunderstorm charging mechanisms using a two-dimensional storm electrification model, J. Geophys. Res., Volume 106 (2001) no. D1, pp. 1165-1192
[12] Electric charge transfer associated with temperature gradients in ice, Proc. Roy. Soc. A, Volume 260 (1961), pp. 523-536
[13] Electric phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity, Phys. Rev., Volume 78 (1950), pp. 254-259
[14] Mechanism of charge transfer between colliding ice particles in thunderstorms, J. Geophys. Res., Volume 99 (1994), pp. 10621-10626
[15] Charge transfer between colliding hydrometeors: role of surface tension gradients, J. Geophys. Res., Volume 106 (2001) no. D8, pp. 7967-7972
[16] Electric surface potential of growing ice crystals, J. Atmos. Sci., Volume 27 (1970), pp. 453-562
[17] Theory of charge and mass transfer in ice–ice collisions, J. Geophys. Res., Volume 106 (2001), pp. 20395-20402
[18] Frequency dependence of the surface conductivity of ice, J. Phys. Chem., Volume 87 (1983), pp. 4078-4083
[19] Measurements of surface and volume conductivities of single ice crystals (E. Whalley et al., eds.), Physics and Chemistry of Ice, Royal Society of Canada, Ottawa, 1973, pp. 140-143
[20] Uptake of SO2 by polycrystalline water ice, J. Coll. Interf. Sci., Volume 238 (2001), pp. 147-159
[21] Ice Physics, Academic Press, 1974
[22] Thermoelectric effects in ice crystals I. Theory of the steady state, Phys. Kondens. Materie, Volume 1 (1964), pp. 143-151
[23] Theory of Elasticity, Vol. 7, Course of Theoretical Physics, Pergamon Press, 1959 (Section 9, Problem 1)
[24] Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification, Q. J. Roy. Met. Soc., Volume 106 (1980), pp. 841-854
[25] Physics of Ice, Oxford University Press, Oxford, 1999
[26] Surface structure of water and ice. II. A revised model, Phil. Mag., Volume 18 (1968), pp. 1287-1300
[27] Surface states of charge carriers and electrical properties of the surface layer of ice, J. Phys. Chem. B, Volume 101 (1997), pp. 6285-6289
[28] Size dependence of restitution coefficients of ice in relation to collision strength, Icarus, Volume 133 (1998), pp. 310-320
[29] Growth of ice Ih in water and measurements of its melting curve, Rev. High Pressure Sci. Technol., Volume 7 (1998), pp. 1144-1146
[30] Microphysics of Clouds and Precipitation, Kluwer Academic, Norwell, MA, 1997
[31] A laboratory study of the influence of water vapour and mixing on the charge transfer process during collisions between ice crystals and graupel, Atmos. Res., Volume 58 (2001), pp. 187-203
[32] et al. Vapor diffusional growth of free-falling snow crystals between −3 and −23 °C, J. Met. Soc. Japan, Volume 69 (1991), pp. 15-30
[33] Charging of aircraft: high-velocity collisions, J. Aircraft, Volume 27 (1990), pp. 218-222
[34] The effect of potential gradients on the charge separation during interactions of snow crystals with an ice sphere, J. Atmos. Sci., Volume 27 (1970), pp. 463-473
Cité par Sources :
Commentaires - Politique