[Mécanismes physiques des décharges électriques sur de grands intervalles d'air]
La formation d'un éclair débute par le développement, dans l'air vierge, de décharges électriques de type « corona » et « leader », semblables à celles observées en laboratoire haute tension sur de grands intervalles d'air. Ainsi, les études expérimentale et théorique des décharges de laboratoire sont un moyen pour comprendre les mécanismes physiques mis en jeu dans le développement de l'éclair. Ces études ont abouti au développement de modèles physiques qui permettent de simuler les décharges électriques et qui peuvent être utilisées pour optimiser les protections contre la foudre.
Dans cet article, les mécanismes physiques associés à chaque étape du développement d'une décharge électrique sont décrits. On analyse la formation du « corona » et la propagation du « leader ». Pour chacun des mécanismes, des modèles de simulation sont présentés et analysés. A partir de ces modèles élémentaires, les auteurs développent des modèles complets pour simuler la propagation spatiale et temporelle des décharges électriques positive et négative de laboratoire. L'adaptation de ces modèles au cas de l'éclair est discutée dans le papier associé dans ce même volume.
The development of atmospheric lightning is initiated and sustained by the formation in virgin air of ‘streamer corona’ and ‘leader’ discharges, very similar to those observed in laboratory long sparks. Therefore, the experimental and theoretical investigations of these laboratory discharges have become of large interest to improve the physical knowledge of the lightning process and to develop self-consistent models that could be applied to new protection concepts.
In the present paper the fundamental processes of the subsequent phases of long air gap discharges are analyzed, from the first corona inception and development to the leader channel formation and propagation. For all these processes simulations models are discussed that have been essentially derived and simplified by the authors, in order to develop sequential time-dependent simulation of the laboratory breakdown, with both positive and negative voltages. The possibility of extending these models to the case of natural lightning is discussed in the companion paper, presented in this same volume.
Mots-clés : décharge, modélisation, arc, leader, simulation, corona, éclair
I. Gallimberti 1 ; G. Bacchiega 1 ; Anne Bondiou-Clergerie 2 ; Philippe Lalande 2
@article{CRPHYS_2002__3_10_1335_0, author = {I. Gallimberti and G. Bacchiega and Anne Bondiou-Clergerie and Philippe Lalande}, title = {Fundamental processes in long air gap discharges}, journal = {Comptes Rendus. Physique}, pages = {1335--1359}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01414-7}, language = {en}, }
TY - JOUR AU - I. Gallimberti AU - G. Bacchiega AU - Anne Bondiou-Clergerie AU - Philippe Lalande TI - Fundamental processes in long air gap discharges JO - Comptes Rendus. Physique PY - 2002 SP - 1335 EP - 1359 VL - 3 IS - 10 PB - Elsevier DO - 10.1016/S1631-0705(02)01414-7 LA - en ID - CRPHYS_2002__3_10_1335_0 ER -
I. Gallimberti; G. Bacchiega; Anne Bondiou-Clergerie; Philippe Lalande. Fundamental processes in long air gap discharges. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1335-1359. doi : 10.1016/S1631-0705(02)01414-7. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01414-7/
[1] An experimental study of positive leaders initiating rocket-triggered lightning, Atmosph. Res., Volume 51 (1999), pp. 189-219
[2] The luminous development of Florida triggered lightning, Res. Lett. Atmos. Electr., Volume 12 (1992), pp. 23-28
[3] P. Laroche, V. Idone, A. Eybert-Berard, L. Barret, Observations of bi-directional leader development in a triggered lightning flash, International Aerospace and Ground Conference on Lightning and Static Electricity (ICOLSE), NASA, Coco Beach, Floride, 1991
[4] A review of natural lightning: experimental data and modelling, IEEE Trans. Electromag. Comp. EMC, Volume 24 (1982), pp. 79-112
[5] A. Bondiou-Clergerie, P. Lalande, P. Laroche, P. Willet, J.C. Davis, I. Gallimberti, The inception phase of positive leaders in triggered lightning: comparison of modeling with experimental data, 11th International Conference on Atmospheric Electricity, Huntsville (USA), 1999
[6] Theoretical modelling of the development of the positive spark in long gaps, J. Phys. D, Volume 27 (1994), pp. 1252-1266
[7] G. Bacchiega, A. Gazzani, M. Bernardi, I. Gallimberti, A. Bondiou-Clergerie, Theoretical modelling of the laboratory negative stepped-leader, ICOLSE, Mannheim, Germany, 1994
[8] Laboratory study of the bi-leader process from an electrically floating conductor, IEE Proc.: Sci. Measurement and Technology, Volume 145 (1998) no. 5, pp. 193-199
[9] Observation and modeling of lightning leaders, C. R. Physique, Volume 3 (2002), pp. 1375-1392
[10] Positive discharges in long air gaps at Les Renardières – 1975 results and conclusions, Electra, Volume 53 (1977)
[11] Negative discharges in long air gaps at Les Renardières – 1978 results, Electra, Volume 74 (1981)
[12] Electron Avalanches and Breakdown in Gases, Butterworths, London, 1964
[13] A computer model for streamer propagation, J. Phys. D, Volume 5 (1972), pp. 2179-2189
[14] The mechanism of the electric spark, Stanford University Press, Stanford, CA, 1941
[15] Dielectric Phenomena in High Voltage Engineering, McGraw-Hill, 1929
[16] G. Hartmann, Spectroscopie de la décharge couronne, PR D Thesis, Paris, 1977
[17] The mechanism of spark breakdown in air at atmospheric pressare between a positive pint and a plane, J. Appl. Phys., Volume 46 (1975), pp. 2005-2020
[18] The mechanism of long spark formation, J. Phys. Coll. C7, Volume 40 (1979) no. 7, pp. 193-250
[19] S. Badaloni, I. Gallimberti, E. Marode, A simplified model of streamer formation in weakly electronegative gases, non publié, 1992
[20] Field enhanced propagation of corona streamers, J. Geophys. Res., Volume 76 (1971), pp. 5799-5806
[21] A simplified model for the simulation of the positive spark development in long air gaps, J. Phys. D, Volume 30 (1997) no. 17, pp. 2441-2452
[22] Research on long air gap discharges at Les Renardières, Electra, Volume 23 (1972)
[23] Long air gap discharges at Les Renardières : 1973 results, Electra, Volume 35 (1974)
[24] Theory of the development of the spark channel, Soviet Phys. JETP, Volume 34 (1958), pp. 1068-1074
[25] An hypersonic interpretation of the development of the spark channel in gases, J. Phys. D, Volume 7 (1974), pp. 620-628
[26] M.M. Kekez, P. Savic, Further support for the hypersonic and Volterra models of spark channel development, IEE 4th Int. Conf. Gas Discharges, Swansea, 1976
[27] Measurement of the recombination of electrons with H3O+(H2O)n series ions, Phys. Rev. A, Volume 7 (1973), p. 292
[28] Leader and space charge characteristics derived from fluxmeter results, Electra, Volume 35 (1974), pp. 110-116
[29] Space charge and energy storage in spere plane gaps, Electra, Volume 53 (1977), pp. 77-85
[30] R. Brambilla, A numerical model for the radial expansion of high current leader channel, 5th Int. Conference on Gas Discharges, Liverpool, 1978
[31] I. Gallimberti, The characteristics of the leader channel in long air gaps, World Electrotech. Conf., Moscow, 1977
[32] A. Castellani, Calcul du champ électrique par la méthode des charges équivalentes pour la simulation d'une décharge bi-leader, Thèse de doctorat de l'Université Paris XI, 1995
[33] Performance of a 16.7 m air rod-plane gap under a negative switching impulse, J. Phys. D, Volume 27 (1994), pp. 2379-2387
Cité par Sources :
Commentaires - Politique