[Mécanismes physiques des décharges électriques sur de grands intervalles d'air]
La formation d'un éclair débute par le développement, dans l'air vierge, de décharges électriques de type « corona » et « leader », semblables à celles observées en laboratoire haute tension sur de grands intervalles d'air. Ainsi, les études expérimentale et théorique des décharges de laboratoire sont un moyen pour comprendre les mécanismes physiques mis en jeu dans le développement de l'éclair. Ces études ont abouti au développement de modèles physiques qui permettent de simuler les décharges électriques et qui peuvent être utilisées pour optimiser les protections contre la foudre.
Dans cet article, les mécanismes physiques associés à chaque étape du développement d'une décharge électrique sont décrits. On analyse la formation du « corona » et la propagation du « leader ». Pour chacun des mécanismes, des modèles de simulation sont présentés et analysés. A partir de ces modèles élémentaires, les auteurs développent des modèles complets pour simuler la propagation spatiale et temporelle des décharges électriques positive et négative de laboratoire. L'adaptation de ces modèles au cas de l'éclair est discutée dans le papier associé dans ce même volume.
The development of atmospheric lightning is initiated and sustained by the formation in virgin air of ‘streamer corona’ and ‘leader’ discharges, very similar to those observed in laboratory long sparks. Therefore, the experimental and theoretical investigations of these laboratory discharges have become of large interest to improve the physical knowledge of the lightning process and to develop self-consistent models that could be applied to new protection concepts.
In the present paper the fundamental processes of the subsequent phases of long air gap discharges are analyzed, from the first corona inception and development to the leader channel formation and propagation. For all these processes simulations models are discussed that have been essentially derived and simplified by the authors, in order to develop sequential time-dependent simulation of the laboratory breakdown, with both positive and negative voltages. The possibility of extending these models to the case of natural lightning is discussed in the companion paper, presented in this same volume.
Mots-clés : décharge, modélisation, arc, leader, simulation, corona, éclair
I. Gallimberti 1 ; G. Bacchiega 1 ; Anne Bondiou-Clergerie 2 ; Philippe Lalande 2
@article{CRPHYS_2002__3_10_1335_0, author = {I. Gallimberti and G. Bacchiega and Anne Bondiou-Clergerie and Philippe Lalande}, title = {Fundamental processes in long air gap discharges}, journal = {Comptes Rendus. Physique}, pages = {1335--1359}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01414-7}, language = {en}, }
TY - JOUR AU - I. Gallimberti AU - G. Bacchiega AU - Anne Bondiou-Clergerie AU - Philippe Lalande TI - Fundamental processes in long air gap discharges JO - Comptes Rendus. Physique PY - 2002 SP - 1335 EP - 1359 VL - 3 IS - 10 PB - Elsevier DO - 10.1016/S1631-0705(02)01414-7 LA - en ID - CRPHYS_2002__3_10_1335_0 ER -
I. Gallimberti; G. Bacchiega; Anne Bondiou-Clergerie; Philippe Lalande. Fundamental processes in long air gap discharges. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1335-1359. doi : 10.1016/S1631-0705(02)01414-7. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01414-7/
[1] An experimental study of positive leaders initiating rocket-triggered lightning, Atmosph. Res., Volume 51 (1999), pp. 189-219
[2] The luminous development of Florida triggered lightning, Res. Lett. Atmos. Electr., Volume 12 (1992), pp. 23-28
[3] P. Laroche, V. Idone, A. Eybert-Berard, L. Barret, Observations of bi-directional leader development in a triggered lightning flash, International Aerospace and Ground Conference on Lightning and Static Electricity (ICOLSE), NASA, Coco Beach, Floride, 1991
[4] A review of natural lightning: experimental data and modelling, IEEE Trans. Electromag. Comp. EMC, Volume 24 (1982), pp. 79-112
[5] A. Bondiou-Clergerie, P. Lalande, P. Laroche, P. Willet, J.C. Davis, I. Gallimberti, The inception phase of positive leaders in triggered lightning: comparison of modeling with experimental data, 11th International Conference on Atmospheric Electricity, Huntsville (USA), 1999
[6] Theoretical modelling of the development of the positive spark in long gaps, J. Phys. D, Volume 27 (1994), pp. 1252-1266
[7] G. Bacchiega, A. Gazzani, M. Bernardi, I. Gallimberti, A. Bondiou-Clergerie, Theoretical modelling of the laboratory negative stepped-leader, ICOLSE, Mannheim, Germany, 1994
[8] Laboratory study of the bi-leader process from an electrically floating conductor, IEE Proc.: Sci. Measurement and Technology, Volume 145 (1998) no. 5, pp. 193-199
[9] Observation and modeling of lightning leaders, C. R. Physique, Volume 3 (2002), pp. 1375-1392
[10] Positive discharges in long air gaps at Les Renardières – 1975 results and conclusions, Electra, Volume 53 (1977)
[11] Negative discharges in long air gaps at Les Renardières – 1978 results, Electra, Volume 74 (1981)
[12] Electron Avalanches and Breakdown in Gases, Butterworths, London, 1964
[13] A computer model for streamer propagation, J. Phys. D, Volume 5 (1972), pp. 2179-2189
[14] The mechanism of the electric spark, Stanford University Press, Stanford, CA, 1941
[15] Dielectric Phenomena in High Voltage Engineering, McGraw-Hill, 1929
[16] G. Hartmann, Spectroscopie de la décharge couronne, PR D Thesis, Paris, 1977
[17] The mechanism of spark breakdown in air at atmospheric pressare between a positive pint and a plane, J. Appl. Phys., Volume 46 (1975), pp. 2005-2020
[18] The mechanism of long spark formation, J. Phys. Coll. C7, Volume 40 (1979) no. 7, pp. 193-250
[19] S. Badaloni, I. Gallimberti, E. Marode, A simplified model of streamer formation in weakly electronegative gases, non publié, 1992
[20] Field enhanced propagation of corona streamers, J. Geophys. Res., Volume 76 (1971), pp. 5799-5806
[21] A simplified model for the simulation of the positive spark development in long air gaps, J. Phys. D, Volume 30 (1997) no. 17, pp. 2441-2452
[22] Research on long air gap discharges at Les Renardières, Electra, Volume 23 (1972)
[23] Long air gap discharges at Les Renardières : 1973 results, Electra, Volume 35 (1974)
[24] Theory of the development of the spark channel, Soviet Phys. JETP, Volume 34 (1958), pp. 1068-1074
[25] An hypersonic interpretation of the development of the spark channel in gases, J. Phys. D, Volume 7 (1974), pp. 620-628
[26] M.M. Kekez, P. Savic, Further support for the hypersonic and Volterra models of spark channel development, IEE 4th Int. Conf. Gas Discharges, Swansea, 1976
[27] Measurement of the recombination of electrons with H3O+(H2O)n series ions, Phys. Rev. A, Volume 7 (1973), p. 292
[28] Leader and space charge characteristics derived from fluxmeter results, Electra, Volume 35 (1974), pp. 110-116
[29] Space charge and energy storage in spere plane gaps, Electra, Volume 53 (1977), pp. 77-85
[30] R. Brambilla, A numerical model for the radial expansion of high current leader channel, 5th Int. Conference on Gas Discharges, Liverpool, 1978
[31] I. Gallimberti, The characteristics of the leader channel in long air gaps, World Electrotech. Conf., Moscow, 1977
[32] A. Castellani, Calcul du champ électrique par la méthode des charges équivalentes pour la simulation d'une décharge bi-leader, Thèse de doctorat de l'Université Paris XI, 1995
[33] Performance of a 16.7 m air rod-plane gap under a negative switching impulse, J. Phys. D, Volume 27 (1994), pp. 2379-2387
- Improved electrogeometric model for shielding failure evaluation of double-circuit UHVAC transmission lines based on leader propagation simulations, Electric Power Systems Research, Volume 239 (2025), p. 111240 | DOI:10.1016/j.epsr.2024.111240
- Lightning as a natural source of synchrotron radiation of x-ray and gamma-ray photons, Physical Review E, Volume 111 (2025) no. 3 | DOI:10.1103/physreve.111.035205
- , 2024 IEEE 5th International Conference on Dielectrics (ICD) (2024), p. 1 | DOI:10.1109/icd59037.2024.10613300
- Effect of the negative-end discharge on the positive leader propagation in bidirectional leader discharges, AIP Advances, Volume 14 (2024) no. 10 | DOI:10.1063/5.0226750
- Breakdown calculation of zoning tests by positive lightnings, AIP Advances, Volume 14 (2024) no. 7 | DOI:10.1063/5.0212033
- Implication of Subsequent Leaders in the Gigantic Jet, Atmosphere, Volume 15 (2024) no. 7, p. 781 | DOI:10.3390/atmos15070781
- Numerical model of lightning attachment on UHV-AC transmission lines and effects of operating voltage, phase angle, and terrain, Electric Power Systems Research, Volume 227 (2024), p. 109986 | DOI:10.1016/j.epsr.2023.109986
- Streamer-to-Leader Transition Characteristics of Long Air Gap Between Sphere and Plane with Burr Defects at High Altitudes, Electronics, Volume 13 (2024) no. 24, p. 4899 | DOI:10.3390/electronics13244899
- Rapid Breakdown Time in Positive Impulse Voltages through Spectroscopy Analysis, Energies, Volume 17 (2024) no. 3, p. 705 | DOI:10.3390/en17030705
- Contribution of Metastable Oxygen Spectra to Fluctuated Waveform Tails after Breakdown Time in Air under Positive and Negative Impulse Voltages, Eng, Volume 5 (2024) no. 3, p. 2264 | DOI:10.3390/eng5030117
- Numerical Simulation of the Lightning Swept Stroke: Application to the Results From the NASA Storm Hazards Program, IEEE Access, Volume 12 (2024), p. 188231 | DOI:10.1109/access.2024.3515833
- Approximate Analytical Method of Streamer Discharge: Mathematical Equation, IEEE Transactions on Plasma Science, Volume 52 (2024) no. 3, p. 623 | DOI:10.1109/tps.2024.3374973
- Numerical simulation of aircraft lightning attachment zone using the enclosing ball method, International Journal of Applied Electromagnetics and Mechanics, Volume 75 (2024) no. 1, p. 39 | DOI:10.3233/jae-230026
- Temperature evolution characteristics of stem root during dark period in positive long spark discharge, Journal of Applied Physics, Volume 135 (2024) no. 5 | DOI:10.1063/5.0191505
- Experimental study of streamer inception and transition characteristics for live working gap under switching impulse, Journal of Applied Physics, Volume 136 (2024) no. 19 | DOI:10.1063/5.0234724
- Development characteristics of rod-plate Gap streamer-leader system at high altitude areas, Journal of Physics D: Applied Physics, Volume 57 (2024) no. 50, p. 505205 | DOI:10.1088/1361-6463/ad7c5d
- The Simulation of Double Head Streamer Discharge in a 0.5 cm Air Gap, Journal of Physics: Conference Series, Volume 2754 (2024) no. 1, p. 012019 | DOI:10.1088/1742-6596/2754/1/012019
- Evaluation of Lightning Strike Distance of Wind Turbine Blades, Lightning Transients and Protection for Renewable Energy System (2024), p. 181 | DOI:10.1007/978-981-97-7267-4_8
- Modification of streamer-to-leader transition model based on radial thermal expansion in the sphere-plane gap discharge at high altitude, Plasma Science and Technology, Volume 26 (2024) no. 1, p. 015501 | DOI:10.1088/2058-6272/ad0c1c
- Observation and analysis of positive leader re-illumination in a 10 m ultra-high voltage transmission line gap under switching impulse voltages, Plasma Science and Technology, Volume 26 (2024) no. 10, p. 105502 | DOI:10.1088/2058-6272/ad56cb
- , 2023 12th Asia-Pacific International Conference on Lightning (APL) (2023), p. 1 | DOI:10.1109/apl57308.2023.10181495
- , 2023 IEEE International Conference on Power Science and Technology (ICPST) (2023), p. 980 | DOI:10.1109/icpst56889.2023.10165324
- , 2023 Panda Forum on Power and Energy (PandaFPE) (2023), p. 1360 | DOI:10.1109/pandafpe57779.2023.10141419
- , AIAA SCITECH 2023 Forum (2023) | DOI:10.2514/6.2023-2618
- A computational discharge model for sphere–plane long air gap under switching impulse voltage, AIP Advances, Volume 13 (2023) no. 5 | DOI:10.1063/5.0148740
- Observation of a narrow thermal channel connected to the anode during dark periods in long positive sparks, Applied Physics Express, Volume 16 (2023) no. 4, p. 046002 | DOI:10.35848/1882-0786/accc0b
- Lightning damage of composite material driven by multi-physics coupling, Composites Science and Technology, Volume 233 (2023), p. 109886 | DOI:10.1016/j.compscitech.2022.109886
- Measuring low-current discharges from grounded rods under high background electric fields, Electric Power Systems Research, Volume 217 (2023), p. 109139 | DOI:10.1016/j.epsr.2023.109139
- On a Possible Mechanism of Space Stem Formation in Negative Long Sparks, Geophysical Research Letters, Volume 50 (2023) no. 12 | DOI:10.1029/2023gl102834
- Polarity Asymmetries in Rocket‐Triggered Lightning, Geophysical Research Letters, Volume 50 (2023) no. 17 | DOI:10.1029/2023gl105041
- The Role of Low Temperature Plasma Research in Designing the Lightning and Precipitation Static Protection of Novel Aircraft, IEEE Transactions on Plasma Science, Volume 51 (2023) no. 4, p. 965 | DOI:10.1109/tps.2022.3209933
- Questions regarding alleged laboratory creation of ball lightning, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 242 (2023), p. 105995 | DOI:10.1016/j.jastp.2022.105995
- Ionization Activity Detected During Dark Periods in Long Air Positive Sparks, Journal of Geophysical Research: Atmospheres, Volume 128 (2023) no. 10 | DOI:10.1029/2023jd038732
- Study on the Electron Density Measurement of 1 m Rod-plate Gap Discharge Process under the Lightning Impulse, Journal of Physics: Conference Series, Volume 2418 (2023) no. 1, p. 012036 | DOI:10.1088/1742-6596/2418/1/012036
- Self-Consistent Positive Streamer-Leader Propagation Model Based on Finite Element Method (FEM) and Voltage Distortion Method (VDM), Pertanika Journal of Science and Technology, Volume 31 (2023) no. 4 | DOI:10.47836/pjst.31.4.30
- Experimental study on the axial growth characteristics of streamer stem during dark period in long spark discharge, Physics of Plasmas, Volume 30 (2023) no. 8 | DOI:10.1063/5.0159387
- Thermal dynamics of leader decay and reactivation in long air gap discharges, Plasma Sources Science and Technology, Volume 32 (2023) no. 7, p. 075009 | DOI:10.1088/1361-6595/ace280
- Searching for intra-cloud positive leaders in VHF, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-41218-x
- , 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE) (2022), p. 1 | DOI:10.1109/ichve53725.2022.9961842
- Electric field measurements of DC-driven positive streamer coronas using the E-FISH method, Applied Physics Letters, Volume 121 (2022) no. 11 | DOI:10.1063/5.0100941
- The Geometry and Charge of the Streamer Bursts Generated by Lightning Rods under the Influence of High Electric Fields, Atmosphere, Volume 13 (2022) no. 12, p. 2028 | DOI:10.3390/atmos13122028
- Modeling of Bi-Polar Leader Inception and Propagation from Flying Aircraft Prior to a Lightning Strike, Atmosphere, Volume 13 (2022) no. 6, p. 943 | DOI:10.3390/atmos13060943
- Close View of the Lightning Attachment Process Unveils the Streamer Zone Fine Structure, Geophysical Research Letters, Volume 49 (2022) no. 24 | DOI:10.1029/2022gl101482
- Schlieren techniques for observations of long positive sparks: Review and application, High Voltage, Volume 7 (2022) no. 5, p. 825 | DOI:10.1049/hve2.12225
- On Calculating the Phase-to-Phase CFO of Overhead Transmission Lines Based on the Spatial Minimum Electric Field, IEEE Transactions on Power Delivery, Volume 37 (2022) no. 5, p. 3698 | DOI:10.1109/tpwrd.2021.3135387
- Validation of the Lightning Fractal Model Based on the Attachment Probability Experiments Using Rod-Rod Air Gaps, IEEE Transactions on Power Delivery, Volume 37 (2022) no. 6, p. 5133 | DOI:10.1109/tpwrd.2022.3171598
- Research on lightning impulse voltage discharge characteristics of electromagnetic metamaterials, Journal of Electrostatics, Volume 116 (2022), p. 103696 | DOI:10.1016/j.elstat.2022.103696
- Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields, Plasma Science and Technology, Volume 24 (2022) no. 2, p. 025402 | DOI:10.1088/2058-6272/ac3971
- Dynamic development model for long gap discharge streamer-leader system based on fractal theory, Plasma Science and Technology, Volume 24 (2022) no. 9, p. 095402 | DOI:10.1088/2058-6272/ac6cd2
- DC-driven positive streamer coronas in airflow, Plasma Sources Science and Technology, Volume 31 (2022) no. 8, p. 085014 | DOI:10.1088/1361-6595/ac844a
- Problems of Lightning Initiation and Development, Radiophysics and Quantum Electronics, Volume 64 (2022) no. 11, p. 780 | DOI:10.1007/s11141-022-10178-z
- Upward propagation of gigantic jets revealed by 3D radio and optical mapping, Science Advances, Volume 8 (2022) no. 31 | DOI:10.1126/sciadv.abl8731
- The St Elmo’s Fire: Its Formation and Measurement on Both Natural and Artificial Structures, 13th Chaotic Modeling and Simulation International Conference (2021), p. 443 | DOI:10.1007/978-3-030-70795-8_34
- , 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA) (2021), p. 01 | DOI:10.1109/iclpandsipda54065.2021.9627395
- , 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA) (2021), p. 01 | DOI:10.1109/iclpandsipda54065.2021.9627414
- , 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA) (2021), p. 1 | DOI:10.1109/iclpandsipda54065.2021.9627459
- , 2021 IEEE 4th International Electrical and Energy Conference (CIEEC) (2021), p. 1 | DOI:10.1109/cieec50170.2021.9510771
- , 2021 IEEE 4th International Electrical and Energy Conference (CIEEC) (2021), p. 1 | DOI:10.1109/cieec50170.2021.9510432
- On a possible mechanism of space stem formation at the negative corona streamer burst periphery, Atmospheric Research, Volume 259 (2021), p. 105685 | DOI:10.1016/j.atmosres.2021.105685
- Optical Signatures Associated With Streamers and Leaders of Laboratory Discharges, Geophysical Research Letters, Volume 48 (2021) no. 20 | DOI:10.1029/2021gl095601
- Observations of the Channel Illuminations During Dark Periods in Long Positive Sparks, Geophysical Research Letters, Volume 48 (2021) no. 4 | DOI:10.1029/2020gl091815
- On the Transition From Precursors to the Initial Upward Positive Leader in Negative Rocket‐Triggered Lightning, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 17 | DOI:10.1029/2020jd033926
- Electrostatic Conditions That Produce Fast Breakdown in Thunderstorms, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 19 | DOI:10.1029/2021jd034829
- Morphological characteristics of streamer region for long air gap positive discharge, Journal of Physics D: Applied Physics, Volume 54 (2021) no. 2, p. 025205 | DOI:10.1088/1361-6463/abbeb3
- Heating of a Local Region of a Branching Streamer as a Starting Point of a Space Leader and a Negative-Leader Step, Plasma Physics Reports, Volume 47 (2021) no. 3, p. 251 | DOI:10.1134/s1063780x21030089
- Elongation and branching of stem channels produced by positive streamers in long air gaps, Scientific Reports, Volume 11 (2021) no. 1 | DOI:10.1038/s41598-021-83816-7
- Leader-chasing behavior in negative artificial triggered lightning flashes, Scientific Reports, Volume 11 (2021) no. 1 | DOI:10.1038/s41598-021-90940-x
- Analysis of light emission and Schlieren from short gap high voltage streamers representing lightning impulses, Scientific Reports, Volume 11 (2021) no. 1 | DOI:10.1038/s41598-021-03839-y
- Феноменология атмосферного электричества (окончание). Глоссарий, "Земля и Вселенная", Земля и Вселенная (2021) no. 2, p. 30 | DOI:10.7868/s0044394821020031
- , 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE) (2020), p. 1 | DOI:10.1109/ichve49031.2020.9279837
- Research on injection charge characteristics of long streamer under positive lightning impulse voltage, AIP Advances, Volume 10 (2020) no. 2 | DOI:10.1063/1.5132297
- Schlieren Images of Negative Streamer and Leader Formations in CO2 and a CF3I-CO2 Electronegative Gas Mixture, Applied Sciences, Volume 10 (2020) no. 22, p. 8006 | DOI:10.3390/app10228006
- Evolution Characteristics during Initial Stage of Triggered Lightning Based on Directly Measured Current, Atmosphere, Volume 11 (2020) no. 6, p. 658 | DOI:10.3390/atmos11060658
- The conductivity and propagation property of lightning leader tip, Atmospheric Research, Volume 245 (2020), p. 105099 | DOI:10.1016/j.atmosres.2020.105099
- Computation of breakdown voltage of long rod-plane air gaps in large temperature and humidity range under positive standard switching impulse voltage, Electric Power Systems Research, Volume 187 (2020), p. 106518 | DOI:10.1016/j.epsr.2020.106518
- Luminous Crown Residual Vs. Bright Space Segment: Characteristical Structures for the Intermittent Positive and Negative Leaders of Triggered Lightning, Geophysical Research Letters, Volume 47 (2020) no. 21 | DOI:10.1029/2020gl088107
- Relationship Between Brightness and Current of the Propagating Positive Leaders in Laboratory High Voltage Atmospheric Discharges, IEEE Access, Volume 8 (2020), p. 158559 | DOI:10.1109/access.2020.3015849
- Experiment and Simulation Study on the Breakdown Current, Velocity, and E-Field in Air Gap Discharge, IEEE Transactions on Electromagnetic Compatibility, Volume 62 (2020) no. 2, p. 324 | DOI:10.1109/temc.2019.2909402
- Current Impulse Velocity After the Air Gap Breakdown at Atmospheric Pressure, IEEE Transactions on Electromagnetic Compatibility, Volume 62 (2020) no. 2, p. 635 | DOI:10.1109/temc.2019.2900670
- Modelling for switching impulse breakdown of live working gaps between equipotential worker and transmission towers, IET Generation, Transmission Distribution, Volume 14 (2020) no. 7, p. 1271 | DOI:10.1049/iet-gtd.2019.0789
- Simulation Study on Discharge Process of Negative Polarity in UHV Tower-line Air Gap, IOP Conference Series: Earth and Environmental Science, Volume 571 (2020) no. 1, p. 012012 | DOI:10.1088/1755-1315/571/1/012012
- Study on the Characteristics of UHV Negative Lightning Discharge in Tower-line Air Gap, IOP Conference Series: Earth and Environmental Science, Volume 571 (2020) no. 1, p. 012048 | DOI:10.1088/1755-1315/571/1/012048
- Experimental study on the final jump phase in long air gap discharges, Journal of Electrostatics, Volume 106 (2020), p. 103473 | DOI:10.1016/j.elstat.2020.103473
- Aircraft Charging and its Influence on Triggered Lightning, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 1 | DOI:10.1029/2019jd031245
- Numerical Simulation of Stepping and Branching Processes in Negative Lightning Leaders, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 7 | DOI:10.1029/2019jd031360
- Experimental study of the dynamics of leader initiation with a long dark period, Journal of Physics D: Applied Physics, Volume 53 (2020) no. 20, p. 205203 | DOI:10.1088/1361-6463/ab7625
- Prediction of In-Orbit Power on Time for Transformer Based on Gas Permeation Analysis of the Seal Cavity, MAPAN, Volume 35 (2020) no. 2, p. 233 | DOI:10.1007/s12647-020-00365-6
- Study on the Influencing Factors of Insulator on the Back-Flashover Lightning Withstand Performance of ±800 kV UHVDC Transmission Lines, Mathematical Problems in Engineering, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/5021408
- Radio Emission Reveals Inner Meter-Scale Structure of Negative Lightning Leader Steps, Physical Review Letters, Volume 124 (2020) no. 10 | DOI:10.1103/physrevlett.124.105101
- Photo electric properties during streamer-to-leader transition in a long positive sphere–plane gap, Physics of Plasmas, Volume 27 (2020) no. 8 | DOI:10.1063/5.0010277
- Investigations of positive streamers as quasi-steady structures using reduced order models, Plasma Sources Science and Technology, Volume 29 (2020) no. 9, p. 095004 | DOI:10.1088/1361-6595/aba863
- Self-Organizing Transport Model of a Spark Discharge in a Thunderstorm Cloud, Radiophysics and Quantum Electronics, Volume 63 (2020) no. 2, p. 124 | DOI:10.1007/s11141-020-10041-z
- , 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2) (2019), p. 1489 | DOI:10.1109/ei247390.2019.9061947
- , 2019 IEEE Power Energy Society General Meeting (PESGM) (2019), p. 1 | DOI:10.1109/pesgm40551.2019.8973908
- Influence of photoionization rates on positive streamer branching in atmospheric air, Acta Physica Sinica, Volume 68 (2019) no. 9, p. 095202 | DOI:10.7498/aps.68.20190060
- Background of Air Insulation Prediction Research, Air Insulation Prediction Theory and Applications (2019), p. 1 | DOI:10.1007/978-981-10-5163-0_1
- A simplified physical model of negative leader in long sparks, Electric Power Systems Research, Volume 176 (2019), p. 105955 | DOI:10.1016/j.epsr.2019.105955
- Thermal Characteristics of Positive Leaders under Different Electrode Terminals in a Long Air Gap, Energies, Volume 12 (2019) no. 21, p. 4024 | DOI:10.3390/en12214024
- Study on Spatial-Temporal Distribution Characteristics of the Discharge Process in a 1 m Rod-Plate Gap Under Different Polarity Lightning Impulses, IEEE Access, Volume 7 (2019), p. 111396 | DOI:10.1109/access.2019.2934406
- A Modified Model for Discharge Voltage of AC Transmission Line-Tower Air Gaps, IEEE Access, Volume 7 (2019), p. 71472 | DOI:10.1109/access.2019.2919440
- Experimental Study on Lightning Attachment Manner to Wind Turbine Blades With Lightning Protection System, IEEE Transactions on Plasma Science, Volume 47 (2019) no. 1, p. 635 | DOI:10.1109/tps.2018.2873200
- Characteristics of Negative Corona Discharge in Air at Various Gaps, IEEE Transactions on Plasma Science, Volume 47 (2019) no. 1, p. 736 | DOI:10.1109/tps.2018.2884696
- Positive Leader Velocity and Discharge Current Considering Leader Branching Under Different Air Pressures, IEEE Transactions on Plasma Science, Volume 47 (2019) no. 5, p. 1939 | DOI:10.1109/tps.2018.2886570
- Application of a SVR model to predict lightning impulse flashover voltages of parallel gaps for insulator strings, IEEJ Transactions on Electrical and Electronic Engineering, Volume 14 (2019) no. 10, p. 1455 | DOI:10.1002/tee.22963
- The dynamic expansion of leader discharge channels under positive voltage impulse with different rise times in long air gap: Experimental observation and simulation results, Journal of Applied Physics, Volume 125 (2019) no. 11 | DOI:10.1063/1.5085852
- The Plasma Nature of Lightning Channels and the Resulting Nonlinear Resistance, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 16, p. 9442 | DOI:10.1029/2019jd030693
- Intermittent Propagation of Upward Positive Leader Connecting a Downward Negative Leader in a Negative Cloud‐to‐Ground Lightning, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 24, p. 13763 | DOI:10.1029/2019jd031148
- Channeling the dielectric breakdown of air by a sequence of laser-generated plasma filaments [Invited], Journal of the Optical Society of America B, Volume 36 (2019) no. 11, p. 3024 | DOI:10.1364/josab.36.003024
- Gigantic jet discharges evolve stepwise through the middle atmosphere, Nature Communications, Volume 10 (2019) no. 1 | DOI:10.1038/s41467-019-12261-y
- On the stem diameter under positive impulses in long air gaps, Physics of Plasmas, Volume 26 (2019) no. 6 | DOI:10.1063/1.5089684
- A new method for spatial allocation of turbines in a wind farm based on lightning protection efficiency, Wind Energy, Volume 22 (2019) no. 10, p. 1310 | DOI:10.1002/we.2357
- , 2018 International Conference on Power System Technology (POWERCON) (2018), p. 2458 | DOI:10.1109/powercon.2018.8601850
- Charge Control Strategy for Aircraft-Triggered Lightning Strike Risk Reduction, AIAA Journal, Volume 56 (2018) no. 5, p. 1988 | DOI:10.2514/1.j056406
- Theroy and observation of bidirectional leader of lightning: Polarity asymmetry, instability, and intermittency, Acta Physica Sinica, Volume 67 (2018) no. 20, p. 205201 | DOI:10.7498/aps.67.20181079
- A macroscopic physical model for self-initiated upward leaders from tall grounded objects and its application, Atmospheric Research, Volume 200 (2018), p. 13 | DOI:10.1016/j.atmosres.2017.09.012
- Electric Field Features and Its Application for Air Gap Breakdown Voltage Prediction, Electric Field (2018) | DOI:10.5772/intechopen.72230
- A three-dimensional downward leader model incorporating geometric and physical characteristics, Electric Power Systems Research, Volume 163 (2018), p. 10 | DOI:10.1016/j.epsr.2018.05.023
- Feature extraction of electric field distribution and its application in discharge voltage prediction of large sphere-plane air gaps, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 25 (2018) no. 3, p. 1030 | DOI:10.1109/tdei.2018.006851
- Breakdown mechanisms of rod-plane air gaps with a dielectric barrier subject to lightning impulse stress, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 25 (2018) no. 3, p. 1121 | DOI:10.1109/tdei.2018.007023
- Numerical Modeling of Electrical Discharges in Long Air Gaps Tested With Positive Switching Impulses, IEEE Transactions on Plasma Science, Volume 46 (2018) no. 3, p. 611 | DOI:10.1109/tps.2018.2802039
- Electrostatic field features on the shortest interelectrode path and a SVR model for breakdown voltage prediction of rod–plane air gaps, IET Science, Measurement Technology, Volume 12 (2018) no. 7, p. 886 | DOI:10.1049/iet-smt.2018.0058
- Abrupt Elongation (Stepping) of Negative and Positive Leaders Culminating in an Intense Corona Streamer Burst: Observations in Long Sparks and Implications for Lightning, Journal of Geophysical Research: Atmospheres, Volume 123 (2018) no. 10, p. 5360 | DOI:10.1029/2017jd027997
- Investigating the Origin of Continual Radio Frequency Impulses During Explosive Volcanic Eruptions, Journal of Geophysical Research: Atmospheres, Volume 123 (2018) no. 8, p. 4157 | DOI:10.1002/2017jd027990
- Number of stems around the H.V. electrode in a 0.74-m air gap under positive impulse, Physics of Plasmas, Volume 25 (2018) no. 10 | DOI:10.1063/1.5055256
- Apokamps produced by repetitive discharges in air, Physics of Plasmas, Volume 25 (2018) no. 8 | DOI:10.1063/1.5038099
- Electron density in surface barrier discharge emerging at argon/water interface: quantification for streamers and leaders, Plasma Sources Science and Technology, Volume 27 (2018) no. 2, p. 025002 | DOI:10.1088/1361-6595/aaa578
- Ignition and advancement of surface discharges at atmospheric air under positive lightning impulse voltage depending on perpendicular electric stress and solid dielectrics: modelling of the propagating phenomenology, The European Physical Journal Applied Physics, Volume 82 (2018) no. 2, p. 20801 | DOI:10.1051/epjap/2018180074
- The development characteristics of the discontinuous leader under the positive switching impulse with low rate of voltage rising, The European Physical Journal Applied Physics, Volume 83 (2018) no. 2, p. 20802 | DOI:10.1051/epjap/2018180103
- Positive streamer in gases: Physical approach from low to high energies, Vacuum, Volume 156 (2018), p. 469 | DOI:10.1016/j.vacuum.2018.07.051
- , 2017 20th International Conference on Electrical Machines and Systems (ICEMS) (2017), p. 1 | DOI:10.1109/icems.2017.8056156
- , 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON) (2017), p. 80 | DOI:10.1109/catcon.2017.8280188
- An Electro-Geometric Model for Lightning Shielding of Multiple Wind Turbines, Energies, Volume 10 (2017) no. 9, p. 1272 | DOI:10.3390/en10091272
- Energy storage features and a predictive model for switching impulse flashover voltages of long air gaps, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 24 (2017) no. 5, p. 2703 | DOI:10.1109/tdei.2017.006397
- The lightning striking probability for offshore wind turbine blade with salt fog contamination, Journal of Applied Physics, Volume 122 (2017) no. 7 | DOI:10.1063/1.4999311
- Computational study of glow corona discharge in wind: Biased conductor, Journal of Electrostatics, Volume 89 (2017), p. 1 | DOI:10.1016/j.elstat.2017.06.005
- Channel branching and zigzagging in negative cloud-to-ground lightning, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/s41598-017-03686-w
- Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/srep40063
- Optimal layout of wind farm for lightning protection based on lightning leader development model, The Journal of Engineering, Volume 2017 (2017) no. 13, p. 2261 | DOI:10.1049/joe.2017.0733
- , 2016 33rd International Conference on Lightning Protection (ICLP) (2016), p. 1 | DOI:10.1109/iclp.2016.7791504
- Study on discharge phenomena of short-air-gap in needle-plate electrode based on fractal theory, Acta Physica Sinica, Volume 65 (2016) no. 2, p. 024703 | DOI:10.7498/aps.65.024703
- Parameter variation in leader channel models used in long air gap discharge simulation, Electric Power Systems Research, Volume 139 (2016), p. 32 | DOI:10.1016/j.epsr.2015.11.033
- Modeling of lightning impulse behavior of long air gaps and insulators including predischarge current: Implications on insulation coordination of overhead transmission lines and substations, Electric Power Systems Research, Volume 139 (2016), p. 37 | DOI:10.1016/j.epsr.2015.11.036
- Survey of recent progress on lightning and lightning protection research, High Voltage, Volume 1 (2016) no. 1, p. 2 | DOI:10.1049/hve.2016.0004
- Hybrid prediction of the power frequency breakdown voltage of short air gaps based on orthogonal design and support vector machine, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 23 (2016) no. 2, p. 795 | DOI:10.1109/tdei.2015.005398
- Simulation of discharge in insulating gas from initial partial discharge to growth of a stepped leader using the percolation model, Japanese Journal of Applied Physics, Volume 55 (2016) no. 2, p. 026101 | DOI:10.7567/jjap.55.026101
- High‐speed video observation of stepwise propagation of a natural upward positive leader, Journal of Geophysical Research: Atmospheres, Volume 121 (2016) no. 24 | DOI:10.1002/2016jd025605
- Pilot system development in metre-scale laboratory discharge, Journal of Physics D: Applied Physics, Volume 49 (2016) no. 42, p. 425203 | DOI:10.1088/0022-3727/49/42/425203
- 2-D model of the streamer zone of a leader, Journal of Plasma Physics, Volume 82 (2016) no. 1 | DOI:10.1017/s0022377815001452
- Experimental Study on Branch and Diffuse Type of Streamers in Leader Restrike of Long Air Gap Discharge, Plasma Science and Technology, Volume 18 (2016) no. 3, p. 305 | DOI:10.1088/1009-0630/18/3/15
- Analyzing x-ray emissions from meter-scale negative discharges in ambient air, Plasma Sources Science and Technology, Volume 25 (2016) no. 4, p. 044002 | DOI:10.1088/0963-0252/25/4/044002
- Characterization of initial current pulses in negative rocket‐triggered lightning with sensitive magnetic sensor, Radio Science, Volume 51 (2016) no. 9, p. 1432 | DOI:10.1002/2016rs005945
- A prediction method for breakdown voltage of typical air gaps based on electric field features and support vector machine, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 22 (2015) no. 4, p. 2125 | DOI:10.1109/tdei.2015.004887
- Gas Heating and Streamer-to-Leader Transition of Impulse Surface Discharge on Quartz Glass in Atmospheric Air, IEEE Transactions on Plasma Science, Volume 43 (2015) no. 12, p. 4210 | DOI:10.1109/tps.2015.2494628
- Characteristics of Upward Leader Emerging From a Single-Phase Conductor With Different Voltage Class, IEEE Transactions on Power Delivery, Volume 30 (2015) no. 4, p. 1833 | DOI:10.1109/tpwrd.2015.2408320
- Lightning and middle atmospheric discharges in the atmosphere, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 134 (2015), p. 78 | DOI:10.1016/j.jastp.2015.10.001
- On the mimimum length of leader channel and the minimum volume of space charge concentration necessary to initiate lightning flashes in thunderclouds, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 136 (2015), p. 39 | DOI:10.1016/j.jastp.2015.09.008
- Time domain simulations of preliminary breakdown pulses in natural lightning, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 11, p. 5316 | DOI:10.1002/2014jd022765
- Calculation of beams of positrons, neutrons, and protons associated with terrestrial gamma ray flashes, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 4, p. 1620 | DOI:10.1002/2014jd022229
- Experimental study on hard x-rays emitted from metre-scale negative discharges in air, Journal of Physics D: Applied Physics, Volume 48 (2015) no. 2, p. 025205 | DOI:10.1088/0022-3727/48/2/025205
- Streamer knotwilg branching: sudden transition in morphology of positive streamers in high-purity nitrogen, Journal of Physics D: Applied Physics, Volume 48 (2015) no. 35, p. 355202 | DOI:10.1088/0022-3727/48/35/355202
- Experimental study on thermal characteristics of positive leader discharges using Mach-Zehnder interferometry, Physics of Plasmas, Volume 22 (2015) no. 6 | DOI:10.1063/1.4922660
- Extended plasma channels created by UV laser in air and their application to control electric discharges, Plasma Physics Reports, Volume 41 (2015) no. 2, p. 112 | DOI:10.1134/s1063780x15010067
- Modeling of the Intracloud Lightning Discharge Radio Emission, Radiophysics and Quantum Electronics, Volume 58 (2015) no. 3, p. 173 | DOI:10.1007/s11141-015-9591-4
- Fractal Model of a Compact Intracloud Discharge. I. Features of the Structure and Evolution, Radiophysics and Quantum Electronics, Volume 58 (2015) no. 7, p. 477 | DOI:10.1007/s11141-015-9621-2
- , 2014 International Conference on Lightning Protection (ICLP) (2014), p. 1445 | DOI:10.1109/iclp.2014.6973357
- , 2014 International Conference on Lightning Protection (ICLP) (2014), p. 480 | DOI:10.1109/iclp.2014.6973171
- , 2014 International Conference on Lightning Protection (ICLP) (2014), p. 564 | DOI:10.1109/iclp.2014.6973188
- , 2014 International Conference on Lightning Protection (ICLP) (2014), p. 898 | DOI:10.1109/iclp.2014.6973251
- , 2014 International Conference on Lightning Protection (ICLP) (2014), p. 979 | DOI:10.1109/iclp.2014.6973265
- The use of low-cost, efficient GPU-based parallel computing in lightning modelling, Electric Power Systems Research, Volume 113 (2014), p. 41 | DOI:10.1016/j.epsr.2014.02.023
- The Effect of Corona Discharge on Leader Initiation in Long Air Gaps, IEEE Transactions on Plasma Science, Volume 42 (2014) no. 4, p. 890 | DOI:10.1109/tps.2014.2305446
- Study on arc temperature calculation model for air gap discharge, International Transactions on Electrical Energy Systems, Volume 24 (2014) no. 12, p. 1664 | DOI:10.1002/etep.1795
- A stepped leader model for lightning including charge distribution in branched channels, Journal of Applied Physics, Volume 116 (2014) no. 10 | DOI:10.1063/1.4895155
- Negative leader step mechanisms observed in altitude triggered lightning, Journal of Geophysical Research: Atmospheres, Volume 119 (2014) no. 13, p. 8160 | DOI:10.1002/2013jd020281
- On the dynamics of hot air plasmas related to lightning discharges: 2. Electrodynamics, Journal of Geophysical Research: Atmospheres, Volume 119 (2014) no. 15, p. 9218 | DOI:10.1002/2013jd020068
- Leader observations during the initial breakdown stage of a lightning flash, Journal of Geophysical Research: Atmospheres, Volume 119 (2014) no. 21 | DOI:10.1002/2014jd021994
- The physical processes of current cutoff in lightning leaders, Journal of Geophysical Research: Atmospheres, Volume 119 (2014) no. 6, p. 2796 | DOI:10.1002/2013jd020494
- Experimental study of the spatio-temporal development of metre-scale negative discharge in air, Journal of Physics D: Applied Physics, Volume 47 (2014) no. 14, p. 145203 | DOI:10.1088/0022-3727/47/14/145203
- The physics of lightning, Physics Reports, Volume 534 (2014) no. 4, p. 147 | DOI:10.1016/j.physrep.2013.09.004
- Joint radio and optical observations of the most radio-powerful intracloud lightning discharges, Annales Geophysicae, Volume 31 (2013) no. 3, p. 563 | DOI:10.5194/angeo-31-563-2013
- The effect of ground altitude on lightning striking distance based on a bi-directional leader model, Atmospheric Research, Volume 125-126 (2013), p. 76 | DOI:10.1016/j.atmosres.2012.08.019
- CFD Modeling of Wet Electrostatic Precipitators in Coaxial Wire‐Tube Configuration, Chemie Ingenieur Technik, Volume 85 (2013) no. 3, p. 245 | DOI:10.1002/cite.201200106
- Streamers in air splitting into three branches, EPL (Europhysics Letters), Volume 103 (2013) no. 2, p. 25002 | DOI:10.1209/0295-5075/103/25002
- Measurement of Transient Electric Fields in Air Gap Discharge With an Integrated Electro-Optic Sensor, IEEE Transactions on Plasma Science, Volume 41 (2013) no. 4, p. 955 | DOI:10.1109/tps.2013.2249669
- Attachment Processes and Influencing Factors in Competition Tests Under Switching Impulse Voltages, IEEE Transactions on Plasma Science, Volume 41 (2013) no. 7, p. 1773 | DOI:10.1109/tps.2013.2259630
- Semi-Empirical Calculation Method of the Positive First Corona Space Charge Under Different Impulse Rising Rates in Long Air Gaps, IEEE Transactions on Plasma Science, Volume 41 (2013) no. 8, p. 2237 | DOI:10.1109/tps.2013.2271048
- A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses, Journal of Applied Physics, Volume 114 (2013) no. 8 | DOI:10.1063/1.4818434
- High‐speed video observations of a natural negative stepped leader and subsequent dart‐stepped leader, Journal of Geophysical Research: Atmospheres, Volume 118 (2013) no. 21 | DOI:10.1002/2013jd019910
- Digital time-resolved optical measurement of discharge currents in long air gaps, Review of Scientific Instruments, Volume 84 (2013) no. 8 | DOI:10.1063/1.4817208
- Toward Better Understanding of Sprite Streamers: Initiation, Morphology, and Polarity Asymmetry, Surveys in Geophysics, Volume 34 (2013) no. 6, p. 797 | DOI:10.1007/s10712-013-9246-y
- An experimental and numerical study of leader development in rod-rod gaps under positive switching impulse voltage, The European Physical Journal Applied Physics, Volume 64 (2013) no. 1, p. 10802 | DOI:10.1051/epjap/2013130229
- , 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344267
- Triggering, guiding and deviation of long air spark discharges with femtosecond laser filament, AIP Advances, Volume 2 (2012) no. 1 | DOI:10.1063/1.3690961
- Comparison of Positive Leader Propagation in Rod–Plane and Inverted Rod–Plane Gaps, IEEE Transactions on Plasma Science, Volume 40 (2012) no. 1, p. 22 | DOI:10.1109/tps.2011.2172002
- Simplified Model Involving Energy Balance Mechanism for Atmospheric-Pressure Plasma Plume Generated in Quartz Tube, Japanese Journal of Applied Physics, Volume 51 (2012) no. 11R, p. 116102 | DOI:10.7567/jjap.51.116102
- A new static calculation of the streamer region for long spark gaps, Journal of Electrostatics, Volume 70 (2012) no. 1, p. 15 | DOI:10.1016/j.elstat.2011.07.013
- Discharges in the Stratosphere and Mesosphere, Space Science Reviews, Volume 169 (2012) no. 1-4, p. 73 | DOI:10.1007/s11214-012-9906-0
- , 2011 7th Asia-Pacific International Conference on Lightning (2011), p. 776 | DOI:10.1109/apl.2011.6110231
- , 2011 XXXth URSI General Assembly and Scientific Symposium (2011), p. 1 | DOI:10.1109/ursigass.2011.6050741
- Generating extra long arcs using exploding wires, Journal of Applied Physics, Volume 110 (2011) no. 9 | DOI:10.1063/1.3660386
- Physical processes during development of upward leaders from tall structures, Journal of Electrostatics, Volume 69 (2011) no. 2, p. 97 | DOI:10.1016/j.elstat.2011.01.003
- High-speed video observations of a lightning stepped leader, Journal of Geophysical Research, Volume 116 (2011) no. D16 | DOI:10.1029/2011jd015818
- Preliminary study on the modelling of negative leader discharges, Journal of Physics D: Applied Physics, Volume 44 (2011) no. 31, p. 315204 | DOI:10.1088/0022-3727/44/31/315204
- Electron density fluctuations accelerate the branching of positive streamer discharges in air, Physical Review E, Volume 84 (2011) no. 4 | DOI:10.1103/physreve.84.046411
- , 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845779
- , 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845875
- Volcanic lightning: global observations and constraints on source mechanisms, Bulletin of Volcanology, Volume 72 (2010) no. 10, p. 1153 | DOI:10.1007/s00445-010-0393-4
- , IEEE PES General Meeting (2010), p. 1 | DOI:10.1109/pes.2010.5590011
- Generalization of the quadratic charge-voltage relation of impulse corona in air, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 17 (2010) no. 1, p. 231 | DOI:10.1109/tdei.2010.5412022
- Observation of the Streamer–Leader Propagation Processes of Long Air-Gap Positive Discharges, IEEE Transactions on Plasma Science, Volume 38 (2010) no. 2, p. 214 | DOI:10.1109/tps.2009.2037004
- Terrestrial gamma ray flash production by active lightning leader channels, Journal of Geophysical Research: Space Physics, Volume 115 (2010) no. A10 | DOI:10.1029/2010ja015647
- , 2009 Asia-Pacific Power and Energy Engineering Conference (2009), p. 1 | DOI:10.1109/appeec.2009.4918362
- High‐speed video observations of rocket‐and‐wire initiated lightning, Geophysical Research Letters, Volume 36 (2009) no. 15 | DOI:10.1029/2009gl038525
- On the possible origin of X-rays in long laboratory sparks, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 71 (2009) no. 17-18, p. 1890 | DOI:10.1016/j.jastp.2009.07.010
- Terrestrial gamma ray flash production by lightning current pulses, Journal of Geophysical Research: Space Physics, Volume 114 (2009) no. A12 | DOI:10.1029/2009ja014531
- Predictive Determination of the Trajectory of an Electric Discharge, Trends in Applied Sciences Research, Volume 4 (2009) no. 1, p. 47 | DOI:10.3923/tasr.2009.47.55
- X rays from 80‐cm long sparks in air, Geophysical Research Letters, Volume 35 (2008) no. 6 | DOI:10.1029/2007gl032678
- A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation, Journal of Geophysical Research: Atmospheres, Volume 113 (2008) no. D17 | DOI:10.1029/2007jd009036
- Multiple x-ray bursts from long discharges in air, Journal of Physics D: Applied Physics, Volume 41 (2008) no. 23, p. 234012 | DOI:10.1088/0022-3727/41/23/234012
- Observation and Interpretation of Lightning Flashes with Electromagnetic Lightning Mapper, Lightning: Principles, Instruments and Applications (2008), p. 231 | DOI:10.1007/978-1-4020-9079-0_10
- Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere, Plasma Physics and Controlled Fusion, Volume 50 (2008) no. 12, p. 124050 | DOI:10.1088/0741-3335/50/12/124050
- The effect of reduced air density on streamer-to-leader transition and on properties of long positive leader, Journal of Physics D: Applied Physics, Volume 40 (2007) no. 14, p. 4133 | DOI:10.1088/0022-3727/40/14/007
- A lightning swept stroke model: A valuable tool to investigate the lightning strike to aircraft, Aerospace Science and Technology, Volume 10 (2006) no. 8, p. 700 | DOI:10.1016/j.ast.2005.10.008
- , Conference Record of the 2006 IEEE International Symposium on Electrical Insulation (2006), p. 51 | DOI:10.1109/elinsl.2006.1665255
- A Simplified Physical Model to Determine the Lightning Upward Connecting Leader Inception, IEEE Transactions on Power Delivery, Volume 21 (2006) no. 2, p. 897 | DOI:10.1109/tpwrd.2005.859290
- Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders, Journal of Geophysical Research: Space Physics, Volume 111 (2006) no. A2 | DOI:10.1029/2005ja011350
- Problems in lightning physics—the role of polarity asymmetry, Plasma Sources Science and Technology, Volume 15 (2006) no. 2, p. S91 | DOI:10.1088/0963-0252/15/2/s12
- THE ORETICAL MODELING OF SPRITES AND JETS, Sprites, Elves and Intense Lightning Discharges, Volume 225 (2006), p. 253 | DOI:10.1007/1-4020-4629-4_12
- Initial leader velocities during intracloud lightning: Possible evidence for a runaway breakdown effect, Journal of Geophysical Research: Atmospheres, Volume 110 (2005) no. D10 | DOI:10.1029/2004jd005312
- Charge–voltage relationship of the first impulse corona in long airgaps, Journal of Physics D: Applied Physics, Volume 38 (2005) no. 13, p. 2215 | DOI:10.1088/0022-3727/38/13/021
- On the Physics of Lightning, IEEE Transactions on Plasma Science, Volume 32 (2004) no. 1, p. 4 | DOI:10.1109/tps.2004.823954
- Theoretical Study on Electrode Configuration of Wire-plate Reactor with Pulse Streamer Discharge, Recent Developments in Applied Electrostatics (2004), p. 136 | DOI:10.1016/b978-008044584-7.50034-7
Cité par 232 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier