[Observation et modélisation du leader de l'éclair]
The development of atmospheric lightning is initiated by a ‘leader’ phase during which ionized channels appear in virgin air. The use of rapid cameras, the measure of fields and currents associated with the discharge allow one to compare the propagation of laboratory leaders with those of natural or artificially triggered lightning. The corresponding physical processes can be analyzed with the help of models developed for laboratory leaders provided that the non linear effects due to the intense current circulation leading to lightning leader thermalization are taken into account. A self-coherent simulation of triggered lightning leaders for both polarities is presented is this paper. Furthermore, these models make it possible to define the ‘stabilization field’ concept, equal to the minimum ambient field allowing the stable progress of a leader from a ground structure, expressed as a height and curvature function of this structure. This concept can be validated through triggered lightning tests. Finally, the stabilization field analysis is completed by a simplified analytical model based upon an electrostatic approach of propagation equilibrium.
Le développement de l'éclair atmosphérique est initié par la phase de « leader » correspondant à la formation de canaux ionisés dans l'air vierge. L'utilisation de caméras rapides, la mesure de champs et de courant associés à la décharge permettent de comparer les caractéristiques de propagation des leaders de laboratoire et ceux de l'éclair naturel ou déclenché artificiellement. Les processus physiques mis en jeu peuvent être analysés grâce aux modèles développés dans le cas du leader de laboratoire si l'on tient compte des effets non-linéaires dus à la circulation de courants intenses, conduisant à la thermalisation du leader de foudre. Une simulation auto-cohérente des leaders de l'éclair déclenché dans les deux polarités est présentée dans cet article. Par ailleurs, ces modèles permettent de définir le concept de « champ de stabilisation », égal au champ ambiant minimum assurant le développement stable d'un leader depuis une structure au sol, exprimé en fonction de la hauteur et du rayon de courbure de cette structure. Ce concept peut être validé grâce aux expériences d'éclairs déclenchés. Enfin, l'analyse du champ de stabilisation est complétée par un modèle analytique simplifié basé sur une approche électrostatique de l'équilibre de propagation.
Mots-clés : foudre, éclair, décharge, modélisation, arc
Philippe Lalande 1 ; Anne Bondiou-Clergerie 1 ; G. Bacchiega 2 ; I. Gallimberti 2
@article{CRPHYS_2002__3_10_1375_0, author = {Philippe Lalande and Anne Bondiou-Clergerie and G. Bacchiega and I. Gallimberti}, title = {Observations and modeling of lightning leaders}, journal = {Comptes Rendus. Physique}, pages = {1375--1392}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01413-5}, language = {en}, }
TY - JOUR AU - Philippe Lalande AU - Anne Bondiou-Clergerie AU - G. Bacchiega AU - I. Gallimberti TI - Observations and modeling of lightning leaders JO - Comptes Rendus. Physique PY - 2002 SP - 1375 EP - 1392 VL - 3 IS - 10 PB - Elsevier DO - 10.1016/S1631-0705(02)01413-5 LA - en ID - CRPHYS_2002__3_10_1375_0 ER -
Philippe Lalande; Anne Bondiou-Clergerie; G. Bacchiega; I. Gallimberti. Observations and modeling of lightning leaders. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1375-1392. doi : 10.1016/S1631-0705(02)01413-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01413-5/
[1] Electra, 23 (1972) (and Electra, 35, 1974)
[2] Electra, 53 (1977)
[3] Electra, 74 (1981)
[4] Theoretical modelling of the development of positive sparks in long gaps, J. Phys. D, Volume 27 (1994)
[5] G.L. Bacchiega, A. Bondiou, I. Gallimberti, Theoretical modelling of the laboratory negative stepped leader, International Aerospace and Ground Conference On Lightning and Static Electricity (ICOLSE), May, 1994
[6] Fundamental processes in long air gap discharges, C. R. Physique, Volume 3 (2002), pp. 1335-1359
[7] The mechanism of the long spark formation, J. Phys. Colloq. C, Volume 7 (1979) no. 7 (C7-193)
[8] Lightning, Vol.1: Physics of Lightning, Academic Press, 1977
[9] J.L. Boulay, Current waveforms observed during lightning strikes on aircraft, International Aerospace and Ground Conference on Lightning and Static Electricity (ICOLSE), NASA, Coco Beach, Floride, April 16–19, 1991
[10] P. Laroche, A. Hubert, Eybert-Berard, Triggered flashes at TRIP 81. First results, AGU Fall Meeting, San Francisco, 1981, TP Onera n∘1981–142
[11] A review of natural lightning: experimental data and modelling, IEEE Trans. Electromag. Comp, Volume EMC-24 (1982), pp. 79-112
[12] P. Laroche, V. Idone, A. Eybert-Berard, L. Barret, Observations of bi-directional leader development in a triggered lightning flash, International Aerospace and Ground Conference on Lightning and Static Electricity (ICOLSE), NASA, Coco Beach, Floride, April 16–19, 1991
[13] Leader properties determined with triggered lightning techniques, J. Geophys. Res, Volume 103 (1998) no. D12, p. 14109
[14] Laboratory study of the bi-leader process from an electrically floating conductor. Part 1: General results, IEE Proc. Sci, Volume 5 (1998), pp. 185-192
[15] A. Castellani, Calcul du champ électrique par la méthode des charges équivalentes pour la simulation d'une décharge bi-leader, Thèse de doctorat de l'Université Paris XI, Juin 1995
[16] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, Cambridge
[17] K. Berger, Development and properties of positive lightning flashes at Mount San Salvadore, Culham Conf. Section I2, 1975
[18] An experimental study of positive leaders initiating rocket-triggered lightning, Atmosph. Res, Volume 51 (1999), pp. 189-219
[19] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Determination of lightning strike zones on aircraft and helicopter. Results of the FULMEN program, Int. Conf. On Lightning and Static Electricity, Toulouse, June 1999
[20] Electrostatique, Tome 1, Masson et C, 1964
[21] I. Gallimberti, M. Goldin, E. Poli, Field calculations for modelling long sparks, University of Padova, Upee – 82/07, May 1982
[22] The luminous development of Florida triggered lightning, Res. Lett. Atmos. Electr, Volume 12 (1992), pp. 23-28
- Modeling of natural first stroke stepped leader characteristics, Electric Power Systems Research, Volume 238 (2025), p. 111175 | DOI:10.1016/j.epsr.2024.111175
- Negative differential resistance, instability, and critical transition in lightning leader, Nonlinear Processes in Geophysics, Volume 32 (2025) no. 2, p. 107 | DOI:10.5194/npg-32-107-2025
- , 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC) (2024), p. 1 | DOI:10.1109/iceeac61226.2024.10576283
- , 2024 4th International Conference on New Energy and Power Engineering (ICNEPE) (2024), p. 511 | DOI:10.1109/icnepe64067.2024.10860344
- Green Flashes Observed in Optical and Infrared during an Extreme Electric Storm, Applied Sciences, Volume 14 (2024) no. 16, p. 6938 | DOI:10.3390/app14166938
- 3D Computation of Lightning Leader Stepped Propagation Inside a Realistic Cloud, Comptes Rendus. Physique, Volume 25 (2024) no. S1, p. 87 | DOI:10.5802/crphys.189
- Numerical model of lightning attachment on UHV-AC transmission lines and effects of operating voltage, phase angle, and terrain, Electric Power Systems Research, Volume 227 (2024), p. 109986 | DOI:10.1016/j.epsr.2023.109986
- Modeling of Lightning Stepped Leader Characteristics, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 31 (2024) no. 4, p. 2055 | DOI:10.1109/tdei.2024.3372485
- Numerical simulation of aircraft lightning attachment zone using the enclosing ball method, International Journal of Applied Electromagnetics and Mechanics, Volume 75 (2024) no. 1, p. 39 | DOI:10.3233/jae-230026
- Mechanism of a stepped leader in a negative lightning, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 265 (2024), p. 106391 | DOI:10.1016/j.jastp.2024.106391
- 3D Monte-Carlo simulations of lightning optical waveforms and images observable by on-board operational instruments, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 319 (2024), p. 108950 | DOI:10.1016/j.jqsrt.2024.108950
- Acoustic Observation of Rocket Triggered Lightning Flashes, Rocket-Triggered Lightning (2024), p. 161 | DOI:10.1007/978-981-97-2347-8_6
- Optical Progressing and Electric Field Change Characteristics of Altitude-Triggered Lightning Flash, Rocket-Triggered Lightning (2024), p. 205 | DOI:10.1007/978-981-97-2347-8_7
- , 2023 12th Asia-Pacific International Conference on Lightning (APL) (2023), p. 1 | DOI:10.1109/apl57308.2023.10181984
- , 2023 IEEE International Conference on Power Science and Technology (ICPST) (2023), p. 980 | DOI:10.1109/icpst56889.2023.10165324
- , 2023 Panda Forum on Power and Energy (PandaFPE) (2023), p. 1360 | DOI:10.1109/pandafpe57779.2023.10141419
- Spider Lightning Characterization: Integrating Optical, NLDN, and GLM Detection, Atmosphere, Volume 14 (2023) no. 7, p. 1191 | DOI:10.3390/atmos14071191
- Numerical simulation of the effect of atmospheric condition on the lightning strike for wind turbine, Frontiers in Earth Science, Volume 10 (2023) | DOI:10.3389/feart.2022.1123747
- Description of the Discharge Process in Long Air Gaps Under Lightning Impulse Voltage, IEEE Transactions on Power Delivery, Volume 38 (2023) no. 4, p. 2454 | DOI:10.1109/tpwrd.2023.3244022
- Calculation Method for Initial Discharge Formation Parts of Live Line Worker Based on Leader Discharge Theory, IEEJ Transactions on Electrical and Electronic Engineering, Volume 18 (2023) no. 6, p. 849 | DOI:10.1002/tee.23799
- Questions regarding alleged laboratory creation of ball lightning, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 242 (2023), p. 105995 | DOI:10.1016/j.jastp.2022.105995
- Self-Consistent Positive Streamer-Leader Propagation Model Based on Finite Element Method (FEM) and Voltage Distortion Method (VDM), Pertanika Journal of Science and Technology, Volume 31 (2023) no. 4 | DOI:10.47836/pjst.31.4.30
- Searching for intra-cloud positive leaders in VHF, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-41218-x
- The Geometry and Charge of the Streamer Bursts Generated by Lightning Rods under the Influence of High Electric Fields, Atmosphere, Volume 13 (2022) no. 12, p. 2028 | DOI:10.3390/atmos13122028
- Observation and Modeling of Dart Leader Development in an Altitude‐Triggered Lightning Flash, Journal of Geophysical Research: Atmospheres, Volume 127 (2022) no. 24 | DOI:10.1029/2022jd037545
- Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields, Plasma Science and Technology, Volume 24 (2022) no. 2, p. 025402 | DOI:10.1088/2058-6272/ac3971
- A computational study of accelerating, steady and fading negative streamers in ambient air, Plasma Sources Science and Technology, Volume 31 (2022) no. 9, p. 095011 | DOI:10.1088/1361-6595/ac8e2e
- Thundercloud Electrostatic Field Measurements during the Inflight EXAEDRE Campaign and during Lightning Strike to the Aircraft, Atmosphere, Volume 12 (2021) no. 12, p. 1645 | DOI:10.3390/atmos12121645
- In‐Cloud Discharge of Positive Cloud‐To‐Ground Lightning and Its Influence on the Initiation of Tower‐Initiated Upward Lightning, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 24 | DOI:10.1029/2021jd035600
- Morphological characteristics of streamer region for long air gap positive discharge, Journal of Physics D: Applied Physics, Volume 54 (2021) no. 2, p. 025205 | DOI:10.1088/1361-6463/abbeb3
- Luminous Crown Residual Vs. Bright Space Segment: Characteristical Structures for the Intermittent Positive and Negative Leaders of Triggered Lightning, Geophysical Research Letters, Volume 47 (2020) no. 21 | DOI:10.1029/2020gl088107
- Influence of lightning surges on wideband‐frequency model of LCC‐UHVDC converter station, IET Generation, Transmission Distribution, Volume 14 (2020) no. 22, p. 5114 | DOI:10.1049/iet-gtd.2020.0641
- Leader Charges, Currents, Ambient Electric Fields, and Space Charges Along Downward Positive Leader Paths Retrieved From Ground Measurements in Metropolis, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 19 | DOI:10.1029/2020jd032818
- , 2019 11th Asia-Pacific International Conference on Lightning (APL) (2019), p. 1 | DOI:10.1109/apl.2019.8815986
- On the Velocity‐Current Relation of Positive Leader Discharges, Geophysical Research Letters, Volume 46 (2019) no. 1, p. 512 | DOI:10.1029/2018gl081022
- , 2018 International Conference on Power System Technology (POWERCON) (2018), p. 2458 | DOI:10.1109/powercon.2018.8601850
- Charge Control Strategy for Aircraft-Triggered Lightning Strike Risk Reduction, AIAA Journal, Volume 56 (2018) no. 5, p. 1988 | DOI:10.2514/1.j056406
- Theroy and observation of bidirectional leader of lightning: Polarity asymmetry, instability, and intermittency, Acta Physica Sinica, Volume 67 (2018) no. 20, p. 205201 | DOI:10.7498/aps.67.20181079
- A three-dimensional downward leader model incorporating geometric and physical characteristics, Electric Power Systems Research, Volume 163 (2018), p. 10 | DOI:10.1016/j.epsr.2018.05.023
- A Simplified Approach for Assessment of Exposure of EHV and UHV Lines to Direct Lightning Strikes, IEEE Transactions on Power Delivery, Volume 33 (2018) no. 5, p. 2420 | DOI:10.1109/tpwrd.2017.2779782
- Investigation of Sinusoidal Phase Voltage Effect on SFR Calculation of HVAC Transmission Lines, Indian Journal of Science and Technology, Volume 11 (2018) no. 1, p. 1 | DOI:10.17485/ijst/2018/v11i1/116538
- , 2017 International Symposium on Lightning Protection (XIV SIPDA) (2017), p. 380 | DOI:10.1109/sipda.2017.8116956
- Modeling the Stepping Process of Negative Lightning Stepped Leaders, Atmosphere, Volume 8 (2017) no. 12, p. 245 | DOI:10.3390/atmos8120245
- Unstable Leader Inception Criteria of Atmospheric Discharges, Atmosphere, Volume 8 (2017) no. 9, p. 156 | DOI:10.3390/atmos8090156
- Computational study of glow corona discharge in wind: Biased conductor, Journal of Electrostatics, Volume 89 (2017), p. 1 | DOI:10.1016/j.elstat.2017.06.005
- Analysis of the lightning‐attractive radius for wind turbines considering the developing process of positive attachment leader, Journal of Geophysical Research: Atmospheres, Volume 122 (2017) no. 6, p. 3481 | DOI:10.1002/2016jd026073
- Expanding on the relationship between continuing current and in‐cloud leader growth, Journal of Geophysical Research: Atmospheres, Volume 122 (2017) no. 8, p. 4150 | DOI:10.1002/2016jd026189
- Gas heating dynamics during leader inception in long air gaps at atmospheric pressure, Journal of Physics D: Applied Physics, Volume 50 (2017) no. 34, p. 345202 | DOI:10.1088/1361-6463/aa7c71
- The Influence of the Shape of Model Hydrometeors on the Formation of Discharge between an Artificial-Thunderstorm Cell and the Ground, Technical Physics Letters, Volume 43 (2017) no. 12, p. 1105 | DOI:10.1134/s1063785017120264
- A one-dimensional thermo-hydrodynamic model for upward leader inception considering gas dynamics and heat conduction, Electric Power Systems Research, Volume 139 (2016), p. 16 | DOI:10.1016/j.epsr.2015.11.028
- Modeling of the Stepped Leader Initiation Process in an Altitude Triggered Lightning, Mathematical Problems in Engineering, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/9201253
- Characterization of initial current pulses in negative rocket‐triggered lightning with sensitive magnetic sensor, Radio Science, Volume 51 (2016) no. 9, p. 1432 | DOI:10.1002/2016rs005945
- Optical and electrical characteristics of in-cloud discharge activity and downward leaders in positive cloud-to-ground lightning flashes, Atmospheric Research, Volume 160 (2015), p. 28 | DOI:10.1016/j.atmosres.2015.02.014
- Simulating electrodeless discharge from a hydrometeor array, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 20, p. 10,879 | DOI:10.1002/2015jd023466
- , 2014 International Conference on Lightning Protection (ICLP) (2014), p. 1960 | DOI:10.1109/iclp.2014.6973448
- , 2014 International Conference on Lightning Protection (ICLP) (2014), p. 215 | DOI:10.1109/iclp.2014.6973124
- , 2014 International Conference on Lightning Protection (ICLP) (2014), p. 480 | DOI:10.1109/iclp.2014.6973171
- Influence on simulation accuracy of atmospheric electric field around a building by space resolution, Atmospheric Research, Volume 138 (2014), p. 301 | DOI:10.1016/j.atmosres.2013.11.023
- On the possible variation of the lightning striking distance as assumed in the IEC lightning protection standard as a function of structure height, Electric Power Systems Research, Volume 113 (2014), p. 79 | DOI:10.1016/j.epsr.2014.03.017
- On the dynamics of hot air plasmas related to lightning discharges: 2. Electrodynamics, Journal of Geophysical Research: Atmospheres, Volume 119 (2014) no. 15, p. 9218 | DOI:10.1002/2013jd020068
- The physical processes of current cutoff in lightning leaders, Journal of Geophysical Research: Atmospheres, Volume 119 (2014) no. 6, p. 2796 | DOI:10.1002/2013jd020494
- , 2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE) (2013), p. 1 | DOI:10.1109/atee.2013.6563443
- The effect of ground altitude on lightning striking distance based on a bi-directional leader model, Atmospheric Research, Volume 125-126 (2013), p. 76 | DOI:10.1016/j.atmosres.2012.08.019
- Propagating features of upward positive leaders in the initial stage of rocket-triggered lightning, Atmospheric Research, Volume 129-130 (2013), p. 90 | DOI:10.1016/j.atmosres.2012.09.005
- Research on the upward leader emerging from transmission line by laboratory experiments, Electric Power Systems Research, Volume 94 (2013), p. 64 | DOI:10.1016/j.epsr.2012.05.016
- Evolution of line charge density of steadily‐developing upward positive leaders in triggered lightning, Journal of Geophysical Research: Atmospheres, Volume 118 (2013) no. 10, p. 4670 | DOI:10.1002/jgrd.50446
- The 3-dimensional numerical simulation of artificially altitude-triggered negative lightning, Journal of Physics: Conference Series, Volume 418 (2013), p. 012024 | DOI:10.1088/1742-6596/418/1/012024
- Characteristics of M‐component in rocket‐triggered lightning and a discussion on its mechanism, Radio Science, Volume 48 (2013) no. 5, p. 597 | DOI:10.1002/rds.20065
- , 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344267
- , 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344305
- , 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344329
- , 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344345
- , 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344359
- Attractive radii of vertical and horizontal conductors evaluated using a self consistent leader inception and propagation model—SLIM, Atmospheric Research, Volume 117 (2012), p. 64 | DOI:10.1016/j.atmosres.2011.08.007
- Estimation of shielding failure number of transmission lines for different trace configurations using leader progression analysis, International Journal of Electrical Power Energy Systems, Volume 38 (2012) no. 1, p. 27 | DOI:10.1016/j.ijepes.2011.12.017
- Physical mechanism and numerical simulation of the inception of the lightning upward leader, Physics of Plasmas, Volume 19 (2012) no. 12 | DOI:10.1063/1.4769378
- , 2011 7th Asia-Pacific International Conference on Lightning (2011), p. 1 | DOI:10.1109/apl.2011.6111062
- , 2011 7th Asia-Pacific International Conference on Lightning (2011), p. 555 | DOI:10.1109/apl.2011.6110188
- , 2011 7th Asia-Pacific International Conference on Lightning (2011), p. 614 | DOI:10.1109/apl.2011.6110200
- Modeling of Trigger-Wire Corona Effects in Rocket-Triggered Lightning, IEEE Transactions on Power Delivery, Volume 26 (2011) no. 2, p. 1166 | DOI:10.1109/tpwrd.2010.2090366
- A Metamodeling Approach for Leader Progression Model-based Shielding Failure Rate Calculation of Transmission Lines Using Artificial Neural Networks, Journal of Electrical Engineering and Technology, Volume 6 (2011) no. 6, p. 760 | DOI:10.5370/jeet.2011.6.6.760
- Physical processes during development of upward leaders from tall structures, Journal of Electrostatics, Volume 69 (2011) no. 2, p. 97 | DOI:10.1016/j.elstat.2011.01.003
- Preliminary study on the modelling of negative leader discharges, Journal of Physics D: Applied Physics, Volume 44 (2011) no. 31, p. 315204 | DOI:10.1088/0022-3727/44/31/315204
- Effect of Space Charge on the Propagation Path of Air Gap Discharge, Plasma Science and Technology, Volume 13 (2011) no. 6, p. 714 | DOI:10.1088/1009-0630/13/6/15
- , 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845753
- , 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845802
- , 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845803
- , 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845779
- , 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845783
- , 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility (2010), p. 1209 | DOI:10.1109/apemc.2010.5475695
- Estimation of shielding failure number of different configurations of double-circuit transmission lines using leader progression analysis model, Electrical Engineering, Volume 92 (2010) no. 2, p. 79 | DOI:10.1007/s00202-010-0163-5
- Modeling of Substation Shielding Against Direct Lightning Strikes, IEEE Transactions on Electromagnetic Compatibility, Volume 52 (2010) no. 3, p. 664 | DOI:10.1109/temc.2010.2046903
- Modeling of Lightning Exposure of Sharp and Blunt Rods, IEEE Transactions on Power Delivery, Volume 25 (2010) no. 4, p. 3122 | DOI:10.1109/tpwrd.2010.2049384
- Statistical analysis of the lightning performance of high voltage OHLs using dynamic simulation of lightning leaders movements, International Journal of Electrical Power Energy Systems, Volume 32 (2010) no. 9, p. 1024 | DOI:10.1016/j.ijepes.2010.02.002
- Dynamic Simulation of Lightning Attachment to Earthed Overhead Transmission Line Structures, SIMULATION, Volume 86 (2010) no. 7, p. 417 | DOI:10.1177/0037549709352258
- Leader Progression Analysis Model for Shielding Failure Computation by Using the Charge Simulation Method, IEEE Transactions on Power Delivery, Volume 23 (2008) no. 4, p. 2201 | DOI:10.1109/tpwrd.2008.2002850
- On the development of a lightning leader model for tortuous or branched channels – Part I: Model description, Journal of Electrostatics, Volume 66 (2008) no. 9-10, p. 482 | DOI:10.1016/j.elstat.2008.04.012
- A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation, Journal of Geophysical Research: Atmospheres, Volume 113 (2008) no. D17 | DOI:10.1029/2007jd009036
- Observation and Interpretation of Lightning Flashes with Electromagnetic Lightning Mapper, Lightning: Principles, Instruments and Applications (2008), p. 231 | DOI:10.1007/978-1-4020-9079-0_10
- Corona initiated from grounded objects under thunderstorm conditions and its influence on lightning attachment, Plasma Sources Science and Technology, Volume 17 (2008) no. 2, p. 024015 | DOI:10.1088/0963-0252/17/2/024015
- The effect of air density on atmospheric electric fields required for lightning initiation from a long airborne object, Atmospheric Research, Volume 86 (2007) no. 2, p. 126 | DOI:10.1016/j.atmosres.2007.04.001
- The effect of reduced air density on streamer-to-leader transition and on properties of long positive leader, Journal of Physics D: Applied Physics, Volume 40 (2007) no. 14, p. 4133 | DOI:10.1088/0022-3727/40/14/007
- A lightning swept stroke model: A valuable tool to investigate the lightning strike to aircraft, Aerospace Science and Technology, Volume 10 (2006) no. 8, p. 700 | DOI:10.1016/j.ast.2005.10.008
- A Simplified Physical Model to Determine the Lightning Upward Connecting Leader Inception, IEEE Transactions on Power Delivery, Volume 21 (2006) no. 2, p. 897 | DOI:10.1109/tpwrd.2005.859290
- A self-consistent upward leader propagation model, Journal of Physics D: Applied Physics, Volume 39 (2006) no. 16, p. 3708 | DOI:10.1088/0022-3727/39/16/028
- Problems in lightning physics—the role of polarity asymmetry, Plasma Sources Science and Technology, Volume 15 (2006) no. 2, p. S91 | DOI:10.1088/0963-0252/15/2/s12
- Initiation and development of first lightning leader: The effects of coronae and position of lightning origin, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 307 | DOI:10.1016/j.atmosres.2004.11.007
- A Macroscopic Inception Criterion for the Upward Leaders of Natural Lightning, IEEE Transactions on Power Delivery, Volume 20 (2005) no. 2, p. 904 | DOI:10.1109/tpwrd.2005.844273
- Initial leader velocities during intracloud lightning: Possible evidence for a runaway breakdown effect, Journal of Geophysical Research: Atmospheres, Volume 110 (2005) no. D10 | DOI:10.1029/2004jd005312
- Dependence of lightning rod efficacy on its geometric dimensions—a computer simulation, Journal of Physics D: Applied Physics, Volume 38 (2005) no. 8, p. 1225 | DOI:10.1088/0022-3727/38/8/021
- The effect of a corona discharge on a lightning attachment, Plasma Physics Reports, Volume 31 (2005) no. 1, p. 75 | DOI:10.1134/1.1856709
Cité par 111 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier