Comptes Rendus
Mécanismes physiques du nuage d'orage et de l'éclair/The physics of thundercloud and lightning discharge
Observations and modeling of lightning leaders
[Observation et modélisation du leader de l'éclair]
Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1375-1392.

Le développement de l'éclair atmosphérique est initié par la phase de « leader » correspondant à la formation de canaux ionisés dans l'air vierge. L'utilisation de caméras rapides, la mesure de champs et de courant associés à la décharge permettent de comparer les caractéristiques de propagation des leaders de laboratoire et ceux de l'éclair naturel ou déclenché artificiellement. Les processus physiques mis en jeu peuvent être analysés grâce aux modèles développés dans le cas du leader de laboratoire si l'on tient compte des effets non-linéaires dus à la circulation de courants intenses, conduisant à la thermalisation du leader de foudre. Une simulation auto-cohérente des leaders de l'éclair déclenché dans les deux polarités est présentée dans cet article. Par ailleurs, ces modèles permettent de définir le concept de « champ de stabilisation », égal au champ ambiant minimum assurant le développement stable d'un leader depuis une structure au sol, exprimé en fonction de la hauteur et du rayon de courbure de cette structure. Ce concept peut être validé grâce aux expériences d'éclairs déclenchés. Enfin, l'analyse du champ de stabilisation est complétée par un modèle analytique simplifié basé sur une approche électrostatique de l'équilibre de propagation.

The development of atmospheric lightning is initiated by a ‘leader’ phase during which ionized channels appear in virgin air. The use of rapid cameras, the measure of fields and currents associated with the discharge allow one to compare the propagation of laboratory leaders with those of natural or artificially triggered lightning. The corresponding physical processes can be analyzed with the help of models developed for laboratory leaders provided that the non linear effects due to the intense current circulation leading to lightning leader thermalization are taken into account. A self-coherent simulation of triggered lightning leaders for both polarities is presented is this paper. Furthermore, these models make it possible to define the ‘stabilization field’ concept, equal to the minimum ambient field allowing the stable progress of a leader from a ground structure, expressed as a height and curvature function of this structure. This concept can be validated through triggered lightning tests. Finally, the stabilization field analysis is completed by a simplified analytical model based upon an electrostatic approach of propagation equilibrium.

Publié le :
DOI : 10.1016/S1631-0705(02)01413-5
Keywords: lightning, modeling, discharge, arc
Mot clés : foudre, éclair, décharge, modélisation, arc

Philippe Lalande 1 ; Anne Bondiou-Clergerie 1 ; G. Bacchiega 2 ; I. Gallimberti 2

1 ONERA, 29, av. de la division Leclerc, 92332 Châtillon, France
2 I.R.S. Srl, via Vigonovese 81, 35127 Padova, Italy
@article{CRPHYS_2002__3_10_1375_0,
     author = {Philippe Lalande and Anne Bondiou-Clergerie and G. Bacchiega and I. Gallimberti},
     title = {Observations and modeling of lightning leaders},
     journal = {Comptes Rendus. Physique},
     pages = {1375--1392},
     publisher = {Elsevier},
     volume = {3},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01413-5},
     language = {en},
}
TY  - JOUR
AU  - Philippe Lalande
AU  - Anne Bondiou-Clergerie
AU  - G. Bacchiega
AU  - I. Gallimberti
TI  - Observations and modeling of lightning leaders
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 1375
EP  - 1392
VL  - 3
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01413-5
LA  - en
ID  - CRPHYS_2002__3_10_1375_0
ER  - 
%0 Journal Article
%A Philippe Lalande
%A Anne Bondiou-Clergerie
%A G. Bacchiega
%A I. Gallimberti
%T Observations and modeling of lightning leaders
%J Comptes Rendus. Physique
%D 2002
%P 1375-1392
%V 3
%N 10
%I Elsevier
%R 10.1016/S1631-0705(02)01413-5
%G en
%F CRPHYS_2002__3_10_1375_0
Philippe Lalande; Anne Bondiou-Clergerie; G. Bacchiega; I. Gallimberti. Observations and modeling of lightning leaders. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1375-1392. doi : 10.1016/S1631-0705(02)01413-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01413-5/

[1] Long air gap discharges at Les Renardières – 1973 results Les Renardières Group Electra, 23 (1972) (and Electra, 35, 1974)

[2] Positive discharges in long air gaps at Les Renardières – 1975 results and conclusions Les Renardières Group Electra, 53 (1977)

[3] Negative discharges in long air gaps at Les Renardières – 1978 results Les Renardières Group Electra, 74 (1981)

[4] A. Bondiou; I. Gallimberti Theoretical modelling of the development of positive sparks in long gaps, J. Phys. D, Volume 27 (1994)

[5] G.L. Bacchiega, A. Bondiou, I. Gallimberti, Theoretical modelling of the laboratory negative stepped leader, International Aerospace and Ground Conference On Lightning and Static Electricity (ICOLSE), May, 1994

[6] I. Gallimberti; G. Bacchiega; A. Bondiou-Clergerie; P. Lalande Fundamental processes in long air gap discharges, C. R. Physique, Volume 3 (2002), pp. 1335-1359

[7] I. Gallimberti The mechanism of the long spark formation, J. Phys. Colloq. C, Volume 7 (1979) no. 7 (C7-193)

[8] R.H. Golde Lightning, Vol.1: Physics of Lightning, Academic Press, 1977

[9] J.L. Boulay, Current waveforms observed during lightning strikes on aircraft, International Aerospace and Ground Conference on Lightning and Static Electricity (ICOLSE), NASA, Coco Beach, Floride, April 16–19, 1991

[10] P. Laroche, A. Hubert, Eybert-Berard, Triggered flashes at TRIP 81. First results, AGU Fall Meeting, San Francisco, 1981, TP Onera n1981–142

[11] M.A. Uman; E.P. Krider A review of natural lightning: experimental data and modelling, IEEE Trans. Electromag. Comp, Volume EMC-24 (1982), pp. 79-112

[12] P. Laroche, V. Idone, A. Eybert-Berard, L. Barret, Observations of bi-directional leader development in a triggered lightning flash, International Aerospace and Ground Conference on Lightning and Static Electricity (ICOLSE), NASA, Coco Beach, Floride, April 16–19, 1991

[13] P. Lalande; A. Bondiou-Clergerie; P. Laroche; A. Eybert-Berard; J.P. Berlandis; B. Bador; A. Bonamy; M.A. Uman; V. Rakov Leader properties determined with triggered lightning techniques, J. Geophys. Res, Volume 103 (1998) no. D12, p. 14109

[14] A. Castellani; A. Bondiou-Clergerie; P. Lalande; A. Bonamy; I. Gallimberti Laboratory study of the bi-leader process from an electrically floating conductor. Part 1: General results, IEE Proc. Sci, Volume 5 (1998), pp. 185-192

[15] A. Castellani, Calcul du champ électrique par la méthode des charges équivalentes pour la simulation d'une décharge bi-leader, Thèse de doctorat de l'Université Paris XI, Juin 1995

[16] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, Cambridge

[17] K. Berger, Development and properties of positive lightning flashes at Mount San Salvadore, Culham Conf. Section I2, 1975

[18] J. Willett; D.A. Davis; P. Laroche An experimental study of positive leaders initiating rocket-triggered lightning, Atmosph. Res, Volume 51 (1999), pp. 189-219

[19] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Determination of lightning strike zones on aircraft and helicopter. Results of the FULMEN program, Int. Conf. On Lightning and Static Electricity, Toulouse, June 1999

[20] E. Durand Electrostatique, Tome 1, Masson et C, 1964

[21] I. Gallimberti, M. Goldin, E. Poli, Field calculations for modelling long sparks, University of Padova, Upee – 82/07, May 1982

[22] V. Idone The luminous development of Florida triggered lightning, Res. Lett. Atmos. Electr, Volume 12 (1992), pp. 23-28

Cité par Sources :

Commentaires - Politique