Comptes Rendus
Mécanismes physiques du nuage d'orage et de l'éclair/The physics of thundercloud and lightning discharge
Observations and modeling of lightning leaders
[Observation et modélisation du leader de l'éclair]
Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1375-1392.

The development of atmospheric lightning is initiated by a ‘leader’ phase during which ionized channels appear in virgin air. The use of rapid cameras, the measure of fields and currents associated with the discharge allow one to compare the propagation of laboratory leaders with those of natural or artificially triggered lightning. The corresponding physical processes can be analyzed with the help of models developed for laboratory leaders provided that the non linear effects due to the intense current circulation leading to lightning leader thermalization are taken into account. A self-coherent simulation of triggered lightning leaders for both polarities is presented is this paper. Furthermore, these models make it possible to define the ‘stabilization field’ concept, equal to the minimum ambient field allowing the stable progress of a leader from a ground structure, expressed as a height and curvature function of this structure. This concept can be validated through triggered lightning tests. Finally, the stabilization field analysis is completed by a simplified analytical model based upon an electrostatic approach of propagation equilibrium.

Le développement de l'éclair atmosphérique est initié par la phase de « leader » correspondant à la formation de canaux ionisés dans l'air vierge. L'utilisation de caméras rapides, la mesure de champs et de courant associés à la décharge permettent de comparer les caractéristiques de propagation des leaders de laboratoire et ceux de l'éclair naturel ou déclenché artificiellement. Les processus physiques mis en jeu peuvent être analysés grâce aux modèles développés dans le cas du leader de laboratoire si l'on tient compte des effets non-linéaires dus à la circulation de courants intenses, conduisant à la thermalisation du leader de foudre. Une simulation auto-cohérente des leaders de l'éclair déclenché dans les deux polarités est présentée dans cet article. Par ailleurs, ces modèles permettent de définir le concept de « champ de stabilisation », égal au champ ambiant minimum assurant le développement stable d'un leader depuis une structure au sol, exprimé en fonction de la hauteur et du rayon de courbure de cette structure. Ce concept peut être validé grâce aux expériences d'éclairs déclenchés. Enfin, l'analyse du champ de stabilisation est complétée par un modèle analytique simplifié basé sur une approche électrostatique de l'équilibre de propagation.

Publié le :
DOI : 10.1016/S1631-0705(02)01413-5
Keywords: lightning, modeling, discharge, arc
Mots-clés : foudre, éclair, décharge, modélisation, arc

Philippe Lalande 1 ; Anne Bondiou-Clergerie 1 ; G. Bacchiega 2 ; I. Gallimberti 2

1 ONERA, 29, av. de la division Leclerc, 92332 Châtillon, France
2 I.R.S. Srl, via Vigonovese 81, 35127 Padova, Italy
@article{CRPHYS_2002__3_10_1375_0,
     author = {Philippe Lalande and Anne Bondiou-Clergerie and G. Bacchiega and I. Gallimberti},
     title = {Observations and modeling of lightning leaders},
     journal = {Comptes Rendus. Physique},
     pages = {1375--1392},
     publisher = {Elsevier},
     volume = {3},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01413-5},
     language = {en},
}
TY  - JOUR
AU  - Philippe Lalande
AU  - Anne Bondiou-Clergerie
AU  - G. Bacchiega
AU  - I. Gallimberti
TI  - Observations and modeling of lightning leaders
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 1375
EP  - 1392
VL  - 3
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01413-5
LA  - en
ID  - CRPHYS_2002__3_10_1375_0
ER  - 
%0 Journal Article
%A Philippe Lalande
%A Anne Bondiou-Clergerie
%A G. Bacchiega
%A I. Gallimberti
%T Observations and modeling of lightning leaders
%J Comptes Rendus. Physique
%D 2002
%P 1375-1392
%V 3
%N 10
%I Elsevier
%R 10.1016/S1631-0705(02)01413-5
%G en
%F CRPHYS_2002__3_10_1375_0
Philippe Lalande; Anne Bondiou-Clergerie; G. Bacchiega; I. Gallimberti. Observations and modeling of lightning leaders. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1375-1392. doi : 10.1016/S1631-0705(02)01413-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01413-5/

[1] Long air gap discharges at Les Renardières – 1973 results Les Renardières Group Electra, 23 (1972) (and Electra, 35, 1974)

[2] Positive discharges in long air gaps at Les Renardières – 1975 results and conclusions Les Renardières Group Electra, 53 (1977)

[3] Negative discharges in long air gaps at Les Renardières – 1978 results Les Renardières Group Electra, 74 (1981)

[4] A. Bondiou; I. Gallimberti Theoretical modelling of the development of positive sparks in long gaps, J. Phys. D, Volume 27 (1994)

[5] G.L. Bacchiega, A. Bondiou, I. Gallimberti, Theoretical modelling of the laboratory negative stepped leader, International Aerospace and Ground Conference On Lightning and Static Electricity (ICOLSE), May, 1994

[6] I. Gallimberti; G. Bacchiega; A. Bondiou-Clergerie; P. Lalande Fundamental processes in long air gap discharges, C. R. Physique, Volume 3 (2002), pp. 1335-1359

[7] I. Gallimberti The mechanism of the long spark formation, J. Phys. Colloq. C, Volume 7 (1979) no. 7 (C7-193)

[8] R.H. Golde Lightning, Vol.1: Physics of Lightning, Academic Press, 1977

[9] J.L. Boulay, Current waveforms observed during lightning strikes on aircraft, International Aerospace and Ground Conference on Lightning and Static Electricity (ICOLSE), NASA, Coco Beach, Floride, April 16–19, 1991

[10] P. Laroche, A. Hubert, Eybert-Berard, Triggered flashes at TRIP 81. First results, AGU Fall Meeting, San Francisco, 1981, TP Onera n1981–142

[11] M.A. Uman; E.P. Krider A review of natural lightning: experimental data and modelling, IEEE Trans. Electromag. Comp, Volume EMC-24 (1982), pp. 79-112

[12] P. Laroche, V. Idone, A. Eybert-Berard, L. Barret, Observations of bi-directional leader development in a triggered lightning flash, International Aerospace and Ground Conference on Lightning and Static Electricity (ICOLSE), NASA, Coco Beach, Floride, April 16–19, 1991

[13] P. Lalande; A. Bondiou-Clergerie; P. Laroche; A. Eybert-Berard; J.P. Berlandis; B. Bador; A. Bonamy; M.A. Uman; V. Rakov Leader properties determined with triggered lightning techniques, J. Geophys. Res, Volume 103 (1998) no. D12, p. 14109

[14] A. Castellani; A. Bondiou-Clergerie; P. Lalande; A. Bonamy; I. Gallimberti Laboratory study of the bi-leader process from an electrically floating conductor. Part 1: General results, IEE Proc. Sci, Volume 5 (1998), pp. 185-192

[15] A. Castellani, Calcul du champ électrique par la méthode des charges équivalentes pour la simulation d'une décharge bi-leader, Thèse de doctorat de l'Université Paris XI, Juin 1995

[16] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes, Cambridge

[17] K. Berger, Development and properties of positive lightning flashes at Mount San Salvadore, Culham Conf. Section I2, 1975

[18] J. Willett; D.A. Davis; P. Laroche An experimental study of positive leaders initiating rocket-triggered lightning, Atmosph. Res, Volume 51 (1999), pp. 189-219

[19] P. Lalande, A. Bondiou-Clergerie, P. Laroche, Determination of lightning strike zones on aircraft and helicopter. Results of the FULMEN program, Int. Conf. On Lightning and Static Electricity, Toulouse, June 1999

[20] E. Durand Electrostatique, Tome 1, Masson et C, 1964

[21] I. Gallimberti, M. Goldin, E. Poli, Field calculations for modelling long sparks, University of Padova, Upee – 82/07, May 1982

[22] V. Idone The luminous development of Florida triggered lightning, Res. Lett. Atmos. Electr, Volume 12 (1992), pp. 23-28

  • Farouk A.M. Rizk Modeling of natural first stroke stepped leader characteristics, Electric Power Systems Research, Volume 238 (2025), p. 111175 | DOI:10.1016/j.epsr.2024.111175
  • Xueqiang Gou; Chao Xin; Liwen Xu; Ping Yuan; Yijun Zhang; Mingli Chen Negative differential resistance, instability, and critical transition in lightning leader, Nonlinear Processes in Geophysics, Volume 32 (2025) no. 2, p. 107 | DOI:10.5194/npg-32-107-2025
  • Kamal Nacereddine; Abdelouahab Mekhaldi; Ahmed Boubakeur, 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC) (2024), p. 1 | DOI:10.1109/iceeac61226.2024.10576283
  • Aihua Zhao; Zhong Fu; Yufei Fu, 2024 4th International Conference on New Energy and Power Engineering (ICNEPE) (2024), p. 511 | DOI:10.1109/icnepe64067.2024.10860344
  • Gilbert Green; Naomi Watanabe Green Flashes Observed in Optical and Infrared during an Extreme Electric Storm, Applied Sciences, Volume 14 (2024) no. 16, p. 6938 | DOI:10.3390/app14166938
  • Philippe Dessante 3D Computation of Lightning Leader Stepped Propagation Inside a Realistic Cloud, Comptes Rendus. Physique, Volume 25 (2024) no. S1, p. 87 | DOI:10.5802/crphys.189
  • Ziwei Ma; Jasronita Jasni; Mohd Zainal Abidin Ab Kadir; Norhafiz Azis Numerical model of lightning attachment on UHV-AC transmission lines and effects of operating voltage, phase angle, and terrain, Electric Power Systems Research, Volume 227 (2024), p. 109986 | DOI:10.1016/j.epsr.2023.109986
  • Farouk A. M. Rizk Modeling of Lightning Stepped Leader Characteristics, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 31 (2024) no. 4, p. 2055 | DOI:10.1109/tdei.2024.3372485
  • Linglong Ding; Yunfeng Zhang; Minmin Jiang Numerical simulation of aircraft lightning attachment zone using the enclosing ball method, International Journal of Applied Electromagnetics and Mechanics, Volume 75 (2024) no. 1, p. 39 | DOI:10.3233/jae-230026
  • A.V. Ivanovskiy Mechanism of a stepped leader in a negative lightning, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 265 (2024), p. 106391 | DOI:10.1016/j.jastp.2024.106391
  • A. Rimboud; T. Farges; L. C-Labonnote; P. Dubuisson; C. Barthe; F. Thieuleux 3D Monte-Carlo simulations of lightning optical waveforms and images observable by on-board operational instruments, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 319 (2024), p. 108950 | DOI:10.1016/j.jqsrt.2024.108950
  • Li Cai; Jianguo Wang; Mi Zhou; Jinxin Cao; Yadong Fan Acoustic Observation of Rocket Triggered Lightning Flashes, Rocket-Triggered Lightning (2024), p. 161 | DOI:10.1007/978-981-97-2347-8_6
  • Li Cai; Jianguo Wang; Mi Zhou; Jinxin Cao; Yadong Fan Optical Progressing and Electric Field Change Characteristics of Altitude-Triggered Lightning Flash, Rocket-Triggered Lightning (2024), p. 205 | DOI:10.1007/978-981-97-2347-8_7
  • Ziwei Ma; Jasronita Jasni; Mohd Zainal Abidin Ab Kadir; Norhafiz Azis, 2023 12th Asia-Pacific International Conference on Lightning (APL) (2023), p. 1 | DOI:10.1109/apl57308.2023.10181984
  • Ziwei Ma; Jasronita Jasni; Mohd Zainal Abidin Ab Kadir; Norhafiz Azis; Jing Xie; Yanhua Ma, 2023 IEEE International Conference on Power Science and Technology (ICPST) (2023), p. 980 | DOI:10.1109/icpst56889.2023.10165324
  • Rongquan Fan; Wenhui Zeng; Zhichao Ren; Yi Luo; Tao Yuan; Jia Shi, 2023 Panda Forum on Power and Energy (PandaFPE) (2023), p. 1360 | DOI:10.1109/pandafpe57779.2023.10141419
  • Gilbert Green; Naomi Watanabe Spider Lightning Characterization: Integrating Optical, NLDN, and GLM Detection, Atmosphere, Volume 14 (2023) no. 7, p. 1191 | DOI:10.3390/atmos14071191
  • Ning Yang; Wei Jiang; Chenlu Jin; Shuqin Zhang; Wenhao Hou Numerical simulation of the effect of atmospheric condition on the lightning strike for wind turbine, Frontiers in Earth Science, Volume 10 (2023) | DOI:10.3389/feart.2022.1123747
  • Uwe Schubert; Ali Shirvani; Uwe Schmidt Description of the Discharge Process in Long Air Gaps Under Lightning Impulse Voltage, IEEE Transactions on Power Delivery, Volume 38 (2023) no. 4, p. 2454 | DOI:10.1109/tpwrd.2023.3244022
  • Yong Peng; Bin Xiao; Kai Liu; Xiang Zhu; Keming Han; Tian Wu Calculation Method for Initial Discharge Formation Parts of Live Line Worker Based on Leader Discharge Theory, IEEJ Transactions on Electrical and Electronic Engineering, Volume 18 (2023) no. 6, p. 849 | DOI:10.1002/tee.23799
  • M.L. Shmatov; K.D. Stephan Questions regarding alleged laboratory creation of ball lightning, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 242 (2023), p. 105995 | DOI:10.1016/j.jastp.2022.105995
  • Ziwei Ma; Jasronita Jasni; Mohd Zainal Abidin Ab Kadir; Norhafiz Azis Self-Consistent Positive Streamer-Leader Propagation Model Based on Finite Element Method (FEM) and Voltage Distortion Method (VDM), Pertanika Journal of Science and Technology, Volume 31 (2023) no. 4 | DOI:10.47836/pjst.31.4.30
  • O. Scholten; B. M. Hare; J. Dwyer; N. Liu; C. Sterpka; K. Mulrey; S. Ter Veen Searching for intra-cloud positive leaders in VHF, Scientific Reports, Volume 13 (2023) no. 1 | DOI:10.1038/s41598-023-41218-x
  • Vernon Cooray; Hasupama Jayasinghe; Marcos Rubinstein; Farhad Rachidi The Geometry and Charge of the Streamer Bursts Generated by Lightning Rods under the Influence of High Electric Fields, Atmosphere, Volume 13 (2022) no. 12, p. 2028 | DOI:10.3390/atmos13122028
  • Li Cai; Wangxiang Chu; Jianguo Wang; Mi Zhou; Yunsheng Yan; Ruixin Tian; Yadong Fan Observation and Modeling of Dart Leader Development in an Altitude‐Triggered Lightning Flash, Journal of Geophysical Research: Atmospheres, Volume 127 (2022) no. 24 | DOI:10.1029/2022jd037545
  • Zhifeng ZHU; Bo LI; Qiang GAO; Jiajian ZHU; Zhongshan LI Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields, Plasma Science and Technology, Volume 24 (2022) no. 2, p. 025402 | DOI:10.1088/2058-6272/ac3971
  • Baohong Guo; Xiaoran Li; Ute Ebert; Jannis Teunissen A computational study of accelerating, steady and fading negative streamers in ambient air, Plasma Sources Science and Technology, Volume 31 (2022) no. 9, p. 095011 | DOI:10.1088/1361-6595/ac8e2e
  • Magalie Buguet; Philippe Lalande; Pierre Laroche; Patrice Blanchet; Aurélie Bouchard; Arnaud Chazottes Thundercloud Electrostatic Field Measurements during the Inflight EXAEDRE Campaign and during Lightning Strike to the Aircraft, Atmosphere, Volume 12 (2021) no. 12, p. 1645 | DOI:10.3390/atmos12121645
  • Shanfeng Yuan; Xiushu Qie; Rubin Jiang; Dongfang Wang; Yu Wang; Caixia Wang; Abhay Srivastava; Ye Tian In‐Cloud Discharge of Positive Cloud‐To‐Ground Lightning and Its Influence on the Initiation of Tower‐Initiated Upward Lightning, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 24 | DOI:10.1029/2021jd035600
  • Jianwei Gu; Shengxin Huang; Yufei Fu; Weijiang Chen; Dengfeng Cheng; Weidong Shi; Zhong Fu; Zhehao Pei; Xing Fan; Tianyu He Morphological characteristics of streamer region for long air gap positive discharge, Journal of Physics D: Applied Physics, Volume 54 (2021) no. 2, p. 025205 | DOI:10.1088/1361-6463/abbeb3
  • Rubin Jiang; Xiushu Qie; ZongXiang Li; Hongbo Zhang; Xiao Li; Shanfeng Yuan; Mingyuan Liu; Zhuling Sun; Abhay Srivastava; Minzhi Liu; Zilong Ma; Guanlin Lv Luminous Crown Residual Vs. Bright Space Segment: Characteristical Structures for the Intermittent Positive and Negative Leaders of Triggered Lightning, Geophysical Research Letters, Volume 47 (2020) no. 21 | DOI:10.1029/2020gl088107
  • Bilal Masood; Song Guobing; Junjie Hou; Fan Zhanfeng; Huang Jinhai Influence of lightning surges on wideband‐frequency model of LCC‐UHVDC converter station, IET Generation, Transmission Distribution, Volume 14 (2020) no. 22, p. 5114 | DOI:10.1049/iet-gtd.2020.0641
  • Yan Gao; Mingli Chen; Weitao Lyu; Qi Qi; Zilong Qin; Ya‐ping Du; Yijun Zhang Leader Charges, Currents, Ambient Electric Fields, and Space Charges Along Downward Positive Leader Paths Retrieved From Ground Measurements in Metropolis, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 19 | DOI:10.1029/2020jd032818
  • Jianwei Gu; Tianyu He; Weijiang Chen; Weidong Shi; Shengxin Huang; Kai Bian, 2019 11th Asia-Pacific International Conference on Lightning (APL) (2019), p. 1 | DOI:10.1109/apl.2019.8815986
  • X. Zhao; L. Liu; X. Wang; L. Liu; L. Qu; L. Jia; J. He; B. Luo; H. Chen On the Velocity‐Current Relation of Positive Leader Discharges, Geophysical Research Letters, Volume 46 (2019) no. 1, p. 512 | DOI:10.1029/2018gl081022
  • Xia Chao; Chen Xiujuan; Lu Tiantian; Shi Weidong; Lei Ting; Ma Xiaoguang; Zhang Zhaohua, 2018 International Conference on Power System Technology (POWERCON) (2018), p. 2458 | DOI:10.1109/powercon.2018.8601850
  • Carmen Guerra-Garcia; Ngoc Cuong Nguyen; Jaime Peraire; Manuel Martinez-Sanchez Charge Control Strategy for Aircraft-Triggered Lightning Strike Risk Reduction, AIAA Journal, Volume 56 (2018) no. 5, p. 1988 | DOI:10.2514/1.j056406
  • Gou Xue-Qiang; Zhang Yi-Jun; Li Ya-Jun; Chen Ming-Li Theroy and observation of bidirectional leader of lightning: Polarity asymmetry, instability, and intermittency, Acta Physica Sinica, Volume 67 (2018) no. 20, p. 205201 | DOI:10.7498/aps.67.20181079
  • Shijun Xie; F. D’Alessandro; Xiangen Zhao A three-dimensional downward leader model incorporating geometric and physical characteristics, Electric Power Systems Research, Volume 163 (2018), p. 10 | DOI:10.1016/j.epsr.2018.05.023
  • Farouk A. M. Rizk A Simplified Approach for Assessment of Exposure of EHV and UHV Lines to Direct Lightning Strikes, IEEE Transactions on Power Delivery, Volume 33 (2018) no. 5, p. 2420 | DOI:10.1109/tpwrd.2017.2779782
  • Nima Bababaglou; Behrooz Vahidi; Abolfazl Rahiminejad Investigation of Sinusoidal Phase Voltage Effect on SFR Calculation of HVAC Transmission Lines, Indian Journal of Science and Technology, Volume 11 (2018) no. 1, p. 1 | DOI:10.17485/ijst/2018/v11i1/116538
  • Andre Lobato; Vernon Cooray; Liliana Arevalo, 2017 International Symposium on Lightning Protection (XIV SIPDA) (2017), p. 380 | DOI:10.1109/sipda.2017.8116956
  • Vernon Cooray; Liliana Arevalo Modeling the Stepping Process of Negative Lightning Stepped Leaders, Atmosphere, Volume 8 (2017) no. 12, p. 245 | DOI:10.3390/atmos8120245
  • Liliana Arevalo; Vernon Cooray Unstable Leader Inception Criteria of Atmospheric Discharges, Atmosphere, Volume 8 (2017) no. 9, p. 156 | DOI:10.3390/atmos8090156
  • N.C. Nguyen; C. Guerra-Garcia; J. Peraire; M. Martinez-Sanchez Computational study of glow corona discharge in wind: Biased conductor, Journal of Electrostatics, Volume 89 (2017), p. 1 | DOI:10.1016/j.elstat.2017.06.005
  • Ning Yang; Qilin Zhang; Wenhao Hou; Ying Wen Analysis of the lightning‐attractive radius for wind turbines considering the developing process of positive attachment leader, Journal of Geophysical Research: Atmospheres, Volume 122 (2017) no. 6, p. 3481 | DOI:10.1002/2016jd026073
  • Jeff L. Lapierre; Richard G. Sonnenfeld; Michael Stock; Paul R. Krehbiel; Harald E. Edens; Daniel Jensen Expanding on the relationship between continuing current and in‐cloud leader growth, Journal of Geophysical Research: Atmospheres, Volume 122 (2017) no. 8, p. 4150 | DOI:10.1002/2016jd026189
  • Lipeng Liu; Marley Becerra Gas heating dynamics during leader inception in long air gaps at atmospheric pressure, Journal of Physics D: Applied Physics, Volume 50 (2017) no. 34, p. 345202 | DOI:10.1088/1361-6463/aa7c71
  • A. G. Temnikov; L. L. Chernenskii; A. V. Orlov; N. Yu. Lysov; O. S. Belova; T. K. Gerastenok; D. S. Zhuravkova The Influence of the Shape of Model Hydrometeors on the Formation of Discharge between an Artificial-Thunderstorm Cell and the Ground, Technical Physics Letters, Volume 43 (2017) no. 12, p. 1105 | DOI:10.1134/s1063785017120264
  • Xuan Zhou; Rong Zeng; Zhizhao Li; Chijie Zhuang A one-dimensional thermo-hydrodynamic model for upward leader inception considering gas dynamics and heat conduction, Electric Power Systems Research, Volume 139 (2016), p. 16 | DOI:10.1016/j.epsr.2015.11.028
  • Bo Zhang; Bin Chen; Lihua Shi; Qiang Chen Modeling of the Stepped Leader Initiation Process in an Altitude Triggered Lightning, Mathematical Problems in Engineering, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/9201253
  • Gaopeng Lu; Hongbo Zhang; Rubin Jiang; Yanfeng Fan; Xiushu Qie; Mingyuan Liu; Zhuling Sun; Zhichao Wang; Ye Tian; Kun Liu Characterization of initial current pulses in negative rocket‐triggered lightning with sensitive magnetic sensor, Radio Science, Volume 51 (2016) no. 9, p. 1432 | DOI:10.1002/2016rs005945
  • Xiangzhen Kong; Yang Zhao; Tong Zhang; Huaibin Wang Optical and electrical characteristics of in-cloud discharge activity and downward leaders in positive cloud-to-ground lightning flashes, Atmospheric Research, Volume 160 (2015), p. 28 | DOI:10.1016/j.atmosres.2015.02.014
  • Vladislav Mazur; Clayborne D. Taylor; Danyal A. Petersen Simulating electrodeless discharge from a hydrometeor array, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 20, p. 10,879 | DOI:10.1002/2015jd023466
  • Xuan Zhou; Rong Zeng; Zhizhao Li; Chijie Zhuang, 2014 International Conference on Lightning Protection (ICLP) (2014), p. 1960 | DOI:10.1109/iclp.2014.6973448
  • Anurag A. Devadiga; M. Joy Thomas, 2014 International Conference on Lightning Protection (ICLP) (2014), p. 215 | DOI:10.1109/iclp.2014.6973124
  • Liliana Arevalo; Vernon Cooray, 2014 International Conference on Lightning Protection (ICLP) (2014), p. 480 | DOI:10.1109/iclp.2014.6973171
  • Y. Tan; X. Guo; J. Zhu; Z. Shi; D. Zhang Influence on simulation accuracy of atmospheric electric field around a building by space resolution, Atmospheric Research, Volume 138 (2014), p. 301 | DOI:10.1016/j.atmosres.2013.11.023
  • Vernon Cooray; Udaya Kumar; Farhad Rachidi; Carlo Alberto Nucci On the possible variation of the lightning striking distance as assumed in the IEC lightning protection standard as a function of structure height, Electric Power Systems Research, Volume 113 (2014), p. 79 | DOI:10.1016/j.epsr.2014.03.017
  • Jean‐François Ripoll; John Zinn; Patrick L. Colestock; Christopher A. Jeffery On the dynamics of hot air plasmas related to lightning discharges: 2. Electrodynamics, Journal of Geophysical Research: Atmospheres, Volume 119 (2014) no. 15, p. 9218 | DOI:10.1002/2013jd020068
  • Vladislav Mazur; Lothar H. Ruhnke The physical processes of current cutoff in lightning leaders, Journal of Geophysical Research: Atmospheres, Volume 119 (2014) no. 6, p. 2796 | DOI:10.1002/2013jd020494
  • Charly Sigogne; Gerard Berger; Thierry Rees; Antoine De Ferron, 2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE) (2013), p. 1 | DOI:10.1109/atee.2013.6563443
  • Mingli Chen; Xueqiang Gou; Yaping Du The effect of ground altitude on lightning striking distance based on a bi-directional leader model, Atmospheric Research, Volume 125-126 (2013), p. 76 | DOI:10.1016/j.atmosres.2012.08.019
  • Rubin Jiang; Xiushu Qie; Caixia Wang; Jing Yang Propagating features of upward positive leaders in the initial stage of rocket-triggered lightning, Atmospheric Research, Volume 129-130 (2013), p. 90 | DOI:10.1016/j.atmosres.2012.09.005
  • Zhizhao Li; Rong Zeng; Zhanqing Yu; She Chen; Yongli Liao; Ruihai Li Research on the upward leader emerging from transmission line by laboratory experiments, Electric Power Systems Research, Volume 94 (2013), p. 64 | DOI:10.1016/j.epsr.2012.05.016
  • Mingli Chen; Dong Zheng; Yaping Du; Yijun Zhang Evolution of line charge density of steadily‐developing upward positive leaders in triggered lightning, Journal of Geophysical Research: Atmospheres, Volume 118 (2013) no. 10, p. 4670 | DOI:10.1002/jgrd.50446
  • Bo Zhang; Bin Chen; Lihua Shi; Qiang Chen The 3-dimensional numerical simulation of artificially altitude-triggered negative lightning, Journal of Physics: Conference Series, Volume 418 (2013), p. 012024 | DOI:10.1088/1742-6596/418/1/012024
  • Rubin Jiang; Xiushu Qie; Jing Yang; Caixia Wang; Yang Zhao Characteristics of M‐component in rocket‐triggered lightning and a discussion on its mechanism, Radio Science, Volume 48 (2013) no. 5, p. 597 | DOI:10.1002/rds.20065
  • Lothar H. Ruhnke, 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344267
  • Vernon Cooray; Carlo Alberto Nucci; Farhad Rachidi, 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344305
  • Franco D'Alessandro, 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344329
  • Vernon Cooray; Takatoshi Shindo, 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344345
  • Nianwen Xiang; Shanqiang Gu; Jiahong Chen; Weijiang Chen, 2012 International Conference on Lightning Protection (ICLP) (2012), p. 1 | DOI:10.1109/iclp.2012.6344359
  • Vernon Cooray; Marley Becerra Attractive radii of vertical and horizontal conductors evaluated using a self consistent leader inception and propagation model—SLIM, Atmospheric Research, Volume 117 (2012), p. 64 | DOI:10.1016/j.atmosres.2011.08.007
  • M. Yahyaabadi; B. Vahidi Estimation of shielding failure number of transmission lines for different trace configurations using leader progression analysis, International Journal of Electrical Power Energy Systems, Volume 38 (2012) no. 1, p. 27 | DOI:10.1016/j.ijepes.2011.12.017
  • Qingmin Li; Xinchang Lu; Wei Shi; Li Zhang; Liang Zou; Jie Lou Physical mechanism and numerical simulation of the inception of the lightning upward leader, Physics of Plasmas, Volume 19 (2012) no. 12 | DOI:10.1063/1.4769378
  • Takatoshi Shindo; Megumu Miki, 2011 7th Asia-Pacific International Conference on Lightning (2011), p. 1 | DOI:10.1109/apl.2011.6111062
  • Li Zhizhao; Zeng Rong; Yu Zhanqing; Chen She; Liao Yongli; Gao Chao, 2011 7th Asia-Pacific International Conference on Lightning (2011), p. 555 | DOI:10.1109/apl.2011.6110188
  • Rubin Jiang; Xiushu Qie; Caixia Wang; Jing Yang, 2011 7th Asia-Pacific International Conference on Lightning (2011), p. 614 | DOI:10.1109/apl.2011.6110200
  • Farouk A. M. Rizk Modeling of Trigger-Wire Corona Effects in Rocket-Triggered Lightning, IEEE Transactions on Power Delivery, Volume 26 (2011) no. 2, p. 1166 | DOI:10.1109/tpwrd.2010.2090366
  • Mohammad Reza Bank Tavakoli; Behrooz Vahidi A Metamodeling Approach for Leader Progression Model-based Shielding Failure Rate Calculation of Transmission Lines Using Artificial Neural Networks, Journal of Electrical Engineering and Technology, Volume 6 (2011) no. 6, p. 760 | DOI:10.5370/jeet.2011.6.6.760
  • Vladislav Mazur; Lothar H. Ruhnke Physical processes during development of upward leaders from tall structures, Journal of Electrostatics, Volume 69 (2011) no. 2, p. 97 | DOI:10.1016/j.elstat.2011.01.003
  • L Arevalo; V Cooray Preliminary study on the modelling of negative leader discharges, Journal of Physics D: Applied Physics, Volume 44 (2011) no. 31, p. 315204 | DOI:10.1088/0022-3727/44/31/315204
  • Lixia Hao; Wei Wang; Huamao Zhan; Xiaohui Han; Lihong Deng Effect of Space Charge on the Propagation Path of Air Gap Discharge, Plasma Science and Technology, Volume 13 (2011) no. 6, p. 714 | DOI:10.1088/1009-0630/13/6/15
  • M. R. Bank Tavakoli; B. Vahidi; S. N. Mirtadjaddini; A. Nasrollahi; F. Azinfar; I. Hajesmaeeli, 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845753
  • Vernon Cooray; Marley Becerra, 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845802
  • Vernon Cooray; Mahendra Fernando; Liliana Arevalo; Marley Becerra, 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845803
  • Mingli Chen; Xueqiang Gou; Yaping Du, 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845779
  • Farouk A. M. Rizk, 2010 30th International Conference on Lightning Protection (ICLP) (2010), p. 1 | DOI:10.1109/iclp.2010.7845783
  • Vernon Cooray, 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility (2010), p. 1209 | DOI:10.1109/apemc.2010.5475695
  • M. Yahyaabadi; B. Vahidi; M. R. Bank Tavakoli Estimation of shielding failure number of different configurations of double-circuit transmission lines using leader progression analysis model, Electrical Engineering, Volume 92 (2010) no. 2, p. 79 | DOI:10.1007/s00202-010-0163-5
  • Farouk A. M. Rizk Modeling of Substation Shielding Against Direct Lightning Strikes, IEEE Transactions on Electromagnetic Compatibility, Volume 52 (2010) no. 3, p. 664 | DOI:10.1109/temc.2010.2046903
  • Farouk A. M. Rizk Modeling of Lightning Exposure of Sharp and Blunt Rods, IEEE Transactions on Power Delivery, Volume 25 (2010) no. 4, p. 3122 | DOI:10.1109/tpwrd.2010.2049384
  • M.R. Bank Tavakoli; B. Vahidi Statistical analysis of the lightning performance of high voltage OHLs using dynamic simulation of lightning leaders movements, International Journal of Electrical Power Energy Systems, Volume 32 (2010) no. 9, p. 1024 | DOI:10.1016/j.ijepes.2010.02.002
  • Mohammad Reza Bank Tavakoli; Behrooz Vahidi Dynamic Simulation of Lightning Attachment to Earthed Overhead Transmission Line Structures, SIMULATION, Volume 86 (2010) no. 7, p. 417 | DOI:10.1177/0037549709352258
  • Behrooz Vahidi; Mostafa Yahyaabadi; Mohammad Reza Bank Tavakoli; S. M. Ahadi Leader Progression Analysis Model for Shielding Failure Computation by Using the Charge Simulation Method, IEEE Transactions on Power Delivery, Volume 23 (2008) no. 4, p. 2201 | DOI:10.1109/tpwrd.2008.2002850
  • Mauricio Vargas; Horacio Torres On the development of a lightning leader model for tortuous or branched channels – Part I: Model description, Journal of Electrostatics, Volume 66 (2008) no. 9-10, p. 482 | DOI:10.1016/j.elstat.2008.04.012
  • Danyal Petersen; Matthew Bailey; William H. Beasley; John Hallett A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation, Journal of Geophysical Research: Atmospheres, Volume 113 (2008) no. D17 | DOI:10.1029/2007jd009036
  • Eric Defer; Pierre Laroche Observation and Interpretation of Lightning Flashes with Electromagnetic Lightning Mapper, Lightning: Principles, Instruments and Applications (2008), p. 231 | DOI:10.1007/978-1-4020-9079-0_10
  • E M Bazelyan; Yu P Raizer; N L Aleksandrov Corona initiated from grounded objects under thunderstorm conditions and its influence on lightning attachment, Plasma Sources Science and Technology, Volume 17 (2008) no. 2, p. 024015 | DOI:10.1088/0963-0252/17/2/024015
  • E.M. Bazelyan; N.L. Aleksandrov; Yu. P. Raizer; A.M. Konchakov The effect of air density on atmospheric electric fields required for lightning initiation from a long airborne object, Atmospheric Research, Volume 86 (2007) no. 2, p. 126 | DOI:10.1016/j.atmosres.2007.04.001
  • E M Bazelyan; Yu P Raizer; N L Aleksandrov The effect of reduced air density on streamer-to-leader transition and on properties of long positive leader, Journal of Physics D: Applied Physics, Volume 40 (2007) no. 14, p. 4133 | DOI:10.1088/0022-3727/40/14/007
  • Alain Broc; Philippe Lalande; Emmanuel Montreuil; Jean-Patrick Moreau; Alain Delannoy; Anders Larsson; Pierre Laroche A lightning swept stroke model: A valuable tool to investigate the lightning strike to aircraft, Aerospace Science and Technology, Volume 10 (2006) no. 8, p. 700 | DOI:10.1016/j.ast.2005.10.008
  • M. Becerra; V. Cooray A Simplified Physical Model to Determine the Lightning Upward Connecting Leader Inception, IEEE Transactions on Power Delivery, Volume 21 (2006) no. 2, p. 897 | DOI:10.1109/tpwrd.2005.859290
  • Marley Becerra; Vernon Cooray A self-consistent upward leader propagation model, Journal of Physics D: Applied Physics, Volume 39 (2006) no. 16, p. 3708 | DOI:10.1088/0022-3727/39/16/028
  • Earle R Williams Problems in lightning physics—the role of polarity asymmetry, Plasma Sources Science and Technology, Volume 15 (2006) no. 2, p. S91 | DOI:10.1088/0963-0252/15/2/s12
  • N.L. Aleksandrov; E.M. Bazelyan; Yu.P. Raizer Initiation and development of first lightning leader: The effects of coronae and position of lightning origin, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 307 | DOI:10.1016/j.atmosres.2004.11.007
  • U. Kumar; P.K. Bokka; J. Padhi A Macroscopic Inception Criterion for the Upward Leaders of Natural Lightning, IEEE Transactions on Power Delivery, Volume 20 (2005) no. 2, p. 904 | DOI:10.1109/tpwrd.2005.844273
  • Sonja A. Behnke; Ronald J. Thomas; Paul R. Krehbiel; William Rison Initial leader velocities during intracloud lightning: Possible evidence for a runaway breakdown effect, Journal of Geophysical Research: Atmospheres, Volume 110 (2005) no. D10 | DOI:10.1029/2004jd005312
  • N L Aleksandrov; E M Bazelyan; F D'Alessandro; Yu P Raizer Dependence of lightning rod efficacy on its geometric dimensions—a computer simulation, Journal of Physics D: Applied Physics, Volume 38 (2005) no. 8, p. 1225 | DOI:10.1088/0022-3727/38/8/021
  • N. L. Aleksandrov; E. M. Bazelyan; Yu. P. Raizer The effect of a corona discharge on a lightning attachment, Plasma Physics Reports, Volume 31 (2005) no. 1, p. 75 | DOI:10.1134/1.1856709

Cité par 111 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: