[Fibres microstructurées : propriétés fondamentales et applications du composant]
La présence de trous à l'échelle de la longueur d'onde dans le plan transverse d'une fibre « éponge » peut produide des propriétés optiques nouvelles qu'on ne pourrait obtenir avec des fibres de formes plus conventionnelle. Les exemples de telles propriétés sont un guidage unimodal à bande large, des caractéristiques non-linéaires extrêmes telles qu'un fort confinement modal ou bien une grande aire modale effective, et un ensemble de propriétés dispersives remarquables telle qu'une dispersion aplatie large-bande, qu'une dispersion anormale en-dessous de 1,3 μm et que des dispersions normales à 1,55 μm. Nous passons en revue les aspects fondamentaux ainsi que les récents progrès effectués, de la conception et la fabrication aux applications et aux composants basés sur ce nouveau type de fibre.
The presence of wavelength-scale holes in the transverse profile of a holey fibre can lead to novel optical properties that cannot be achieved in more conventional forms of optical fibre. Examples of such properties include broadband single-mode guidance, the extremes of fibre nonlinearity, from fibres providing tight mode confinement to those offering large mode areas, and a range of remarkable dispersive properties, including broadband flattened dispersion, anomalous dispersion below 1.3 μm, and large normal dispersion values at 1.55 μm. Fundamentals and recent progress are reviewed, ranging from design and fabrication through to applications and devices based on this emerging fibre type.
Publié le :
Mots-clés : Fibres optiques micro-structurées, Fibres « éponge », Fibres à crystal photonique photonic, Conception et fabrication (des fibres), Composants non-linéaires à fibre
Tanya M. Monro 1 ; David J. Richardson 1
@article{CRPHYS_2003__4_1_175_0, author = {Tanya M. Monro and David J. Richardson}, title = {Holey optical fibres: {Fundamental} properties and device applications}, journal = {Comptes Rendus. Physique}, pages = {175--186}, publisher = {Elsevier}, volume = {4}, number = {1}, year = {2003}, doi = {10.1016/S1631-0705(03)00004-5}, language = {en}, }
Tanya M. Monro; David J. Richardson. Holey optical fibres: Fundamental properties and device applications. Comptes Rendus. Physique, Volume 4 (2003) no. 1, pp. 175-186. doi : 10.1016/S1631-0705(03)00004-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00004-5/
[1] Electron. Lett., 31 (1995), p. 1941
[2] Electron. Lett., 36 (2000), pp. 1998-2000
[3] Opt. Express, 9 (2001), pp. 319-327
[4] Opt. Lett., 25 (2000), pp. 206-208
[5] IEEE J. Lightwave Technol., 17 (1999), pp. 1093-1101
[6] Opt. Lett., 24 (1999), pp. 1395-1397
[7] Large mode area photonic crystal fibre, Electron. Lett., Volume 34 (1998), pp. 1347-1348
[8] Opt. Lett., 22 (1997), pp. 961-963
[9] IEEE Photonics Technol. Lett., 12 (2000), pp. 807-809
[10] Science, 285 (1999), pp. 1537-1539
[11] Pure Appl. Opt., 1 (1999), pp. 477-482
[12] Opt. Lett., 19 (1996), pp. 1547-1549
[13] Proc. Conference of Optical Fiber Communications, OFC '2002, OSA Technical Digest, Anaheim, CA, 2002, pp. 466-467 (paper xxx)
[14] Electron. Lett., 38 (2002), pp. 546-547
[15] Proc. 27th European Conference on Optical Communication ECOC '2001, Amsterdam, 2001, p. xxx (paper Th.A. 1.5)
[16] Opt. Lett., 24 (1999), pp. 1460-1462
[17] Opt. Fiber Technol., 6 (2000), pp. 181-191
[18] Opt. Fiber Technol., 5 (1999), pp. 305-330
[19] T.M. Monro, N.G.R. Broderick, D.J. Richardson, in: NATO Summer School on Nanoscale Linear and Nonlinear Optics, Erice, Sicily, 2000
[20] Opt. Lett., 26 (2001), pp. 488-490
[21] Opt. Lett., 2 (2001), pp. 1660-1662
[22] Opt. Express, 10 (2002), pp. 449-454
[23] Nonlinear Fiber Optics, Academic Press, New York, 1989
[24] IEEE J. Sel. Top. Quant. Electron., 5 (1999), pp. 1385-1391
[25] Proc. European Conference on Optical Communications, ECOC '02, Copenhagen, Denmark, 2002 (paper PD1.2)
[26] Proc. European Conference on Optical Communications, ECOC '02, Copenhagen, Denmark, 2002 (paper PD1.3)
[27] Proc. Conference on Optical Communications, OFC '2002, OSA Technical Digest, Anaheim, CA, 2002, pp. 524-525
[28] J. Opt. Soc. Am. B, 19 (2002), pp. 1286-1294
[29] Opt. Lett., 25 (2000), pp. 25-27
[30] IEEE Photonics Technol. Lett., 11 (1999), pp. 674-676
[31] Opt. Lett., 24 (1999), pp. 318-320
[32] Opt. Fiber Technol., 3 (1997), pp. 142-148
[33] IEEE J. Quantum Electron., 23 (1987), pp. 2089-2094
[34] Opt. Lett., 26 (2001), pp. 1045-1047
[35] et al. Microwaves Opt. Acoust., 2 (1978), pp. 134-140
[36] Electron. Lett., 37 (2001), p. 287
[37] Proc. Conference on Lasers and Electro-Optics, CLEO 2002, Long Beach, CA, Optical Society of America, 2002 (paper CMJ6)
[38] Appl. Opt., 21 (1982), pp. 4208-4213
[39] Opt. Lett., 26 (2001), pp. 1233-1235
[40] Proc. European Conference on Optical Communications, ECOC '98, Madrid, 1998, p. 475
[41] IEEE Photonics Technol. Lett., 14 (2002) no. 8, pp. 876-878
[42] IEEE Photonics Technol. Lett., 12 (2000), pp. 522-524
[43] Proc. Conference on Lasers and Electro-Optics, CLEO '2002, Long Beach, 2002 (postdeadline CPDB5)
[44] IEEE Photonics Technol. Lett., 4 (1992), pp. 69-72
[45] Electron. Lett., 36 (2000), pp. 709-711
[46] Opt. Lett., 27 (2002), pp. 927-929
[47] IEEE Photonics Technol. Lett., 13 (2001), pp. 981-983
[48] Opt. Lett., 27 (2002), pp. 424-426
[49] Proc. Optical Fiber Communications, OFC '2002, Anaheim, 2002
[50] IEEE J. Lightwave Technol., 17 (1999), pp. 2138-2141
[51] Electron. Lett., 36 (2000), pp. 1452-1454
[52] Opt. Lett., 37 (2001), pp. 560-561
[53] Proc. Nonlinear Guided Waves and Their Applications, NLGW 2001, 2001 (paper WB1-2)
[54] Opt. Lett., 24 (1999), pp. 1428-1430
[55] Opt. Express, 9 (2001), pp. 714-720
Cité par Sources :
Commentaires - Politique