Comptes Rendus
Extra dimensions in physics and astrophysics/Dimensions supplémentaires/en physique et astrophysique
The quantum Hall effect on 4
[L'effet Hall quantique sur 4]
Comptes Rendus. Physique, Volume 4 (2003) no. 3, pp. 405-417.

Zhang et Hu ont formulé un système de Hall quantique SU(2) sur la quatre-sphère, avec une dynamique de bord tridimensionnelle intéressante comprenant des états sans gap d'hélicité differente de zéro. Afin de comprendre la physique locale de leur modèle, nous étudions les systèmes de Hall quantique U(1) et SU(2) sur un 4 plat, avec pour bord un 3 plat. Dans le cas U(1) la dynamique de bord est essentiellement uni-dimensionnelle. La théorie SU(2) peut être formulée sur 4 pour n'importe quel isospin I, mais afin d'obtenir dans une théorie de bord plate nous devons prendre I→∞ comme Zhang et Hu. La théorie se simplifie dans cette limite, le bord devenant une collection de systèmes unidimensionnels. Nous discutons également des contraintes générales sur l'apparition de la gravité à partir de théories de champs non-gravitationnelles.

Zhang and Hu have formulated an SU(2) quantum Hall system on the four-sphere, with interesting three-dimensional boundary dynamics including gapless states of nonzero helicity. In order to understand the local physics of their model we study the U(1) and SU(2) quantum Hall systems on flat 4, with flat boundary 3. In the U(1) case the boundary dynamics is essentially one-dimensional. The SU(2) theory can be formulated on 4 for any isospin I, but in order to obtain a flat boundary theory we must take I→∞ as in Zhang and Hu. The theory simplifies in the limit, the boundary becoming a collection of one-dimensional systems. We also discuss general constraints on the emergence of gravity from nongravitational field theories.

Publié le :
DOI : 10.1016/S1631-0705(03)00038-0

Henriette Elvang 1 ; Joseph Polchinski 2

1 Department of Physics, University of California, Santa Barbara, CA 93106, USA
2 Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA
@article{CRPHYS_2003__4_3_405_0,
     author = {Henriette Elvang and Joseph Polchinski},
     title = {The quantum {Hall} effect on $ \mathbb{R}^{4}$},
     journal = {Comptes Rendus. Physique},
     pages = {405--417},
     publisher = {Elsevier},
     volume = {4},
     number = {3},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00038-0},
     language = {en},
}
TY  - JOUR
AU  - Henriette Elvang
AU  - Joseph Polchinski
TI  - The quantum Hall effect on $ \mathbb{R}^{4}$
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 405
EP  - 417
VL  - 4
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00038-0
LA  - en
ID  - CRPHYS_2003__4_3_405_0
ER  - 
%0 Journal Article
%A Henriette Elvang
%A Joseph Polchinski
%T The quantum Hall effect on $ \mathbb{R}^{4}$
%J Comptes Rendus. Physique
%D 2003
%P 405-417
%V 4
%N 3
%I Elsevier
%R 10.1016/S1631-0705(03)00038-0
%G en
%F CRPHYS_2003__4_3_405_0
Henriette Elvang; Joseph Polchinski. The quantum Hall effect on $ \mathbb{R}^{4}$. Comptes Rendus. Physique, Volume 4 (2003) no. 3, pp. 405-417. doi : 10.1016/S1631-0705(03)00038-0. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00038-0/

[1] S.C. Zhang; J.P. Hu Science, 294 (2001), p. 823 | arXiv

[2] J.P. Hu; S.C. Zhang | arXiv

[3] D. Karabali; V.P. Nair | arXiv

[4] M. Fabinger; Y.X. Chen; B.Y. Hou; B.Y. Hou; B.A. Bernevig; C.H. Chern; J.P. Hu; N. Toumbas; S.C. Zhang Nucl. Phys. B, 0205, 2002, p. 037 | arXiv

[5] S. Weinberg Phys. Rev., 138 (1965), p. B988

[6] M. Fierz; W. Pauli Proc. Roy. Soc. London Ser. A, 173 (1939), p. 211

[7] S. Weinberg; E. Witten Phys. Lett. B, 96 (1980), p. 59

[8] S. Weinberg Phys. Rev., 135 (1964), p. B1049

[9] A. Neveu; J. Scherk; J. Scherk; J.H. Schwarz; T. Yoneya Prog. Theor. Phys., 36 (1972), p. 155

[10] J. Maldacena Adv. Theor. Math. Phys., 2 (1998), p. 231 | arXiv

[11] S.S. Gubser; I.R. Klebanov; A.M. Polyakov; E. Witten Adv. Theor. Math. Phys., 428 (1998), p. 105 | arXiv

[12] A. D'Adda; M. Luscher; P. Di Vecchia; A. D'Adda; M. Luscher; P. Di Vecchia; E. Witten Nucl. Phys. B, 146 (1978), p. 63

[13] D. Forster; H.B. Nielsen; M. Ninomiya; I. Affleck; J.B. Marston Phys. Rev. B, 94 (1980), p. 135

[14] K.A. Intriligator; N. Seiberg Nucl. Phys. Proc. Suppl. BC, 45 (1996), p. 1 | arXiv

  • Abhishek Agarwal; Dimitra Karabali; V. P. Nair Fractional quantum Hall effect in higher dimensions, Physical Review D, Volume 111 (2025) no. 2 | DOI:10.1103/physrevd.111.025002
  • Jean-Baptiste Bouhiron; Aurélien Fabre; Qi Liu; Quentin Redon; Nehal Mittal; Tanish Satoor; Raphael Lopes; Sylvain Nascimbene Realization of an atomic quantum Hall system in four dimensions, Science, Volume 384 (2024) no. 6692, p. 223 | DOI:10.1126/science.adf8459
  • Dimitra Karabali; V. P. Nair Transport coefficients for higher dimensional quantum Hall effect, Physical Review B, Volume 108 (2023) no. 20 | DOI:10.1103/physrevb.108.205155
  • Benoit Estienne; Blagoje Oblak; Jean-Marie Stéphan Ergodic edge modes in the 4D quantum Hall effect, SciPost Physics, Volume 11 (2021) no. 1 | DOI:10.21468/scipostphys.11.1.016
  • Fabrizio Canfora; Seung Hun Oh Analytic non-Abelian gravitating solitons in the Einstein–Yang–Mills–Higgs theory and transitions between them, The European Physical Journal C, Volume 81 (2021) no. 5 | DOI:10.1140/epjc/s10052-021-09197-3
  • Alec Barns-Graham; Nick Dorey; Nakarin Lohitsiri; David Tong; Carl Turner ADHM and the 4d quantum Hall effect, Journal of High Energy Physics, Volume 2018 (2018) no. 4 | DOI:10.1007/jhep04(2018)040
  • Josevi Carvalho; Alexandre M. de M. Carvalho; Everton Cavalcante; Claudio Furtado Klein–Gordon oscillator in Kaluza–Klein theory, The European Physical Journal C, Volume 76 (2016) no. 7 | DOI:10.1140/epjc/s10052-016-4189-3
  • Yi Li Time-reversal invariantSU(2)Hofstadter problem in three-dimensional lattices, Physical Review B, Volume 91 (2015) no. 19 | DOI:10.1103/physrevb.91.195133
  • Jungjai Lee; Hyun Seok Yang Quantum gravity from noncommutative spacetime, Journal of the Korean Physical Society, Volume 65 (2014) no. 11, p. 1754 | DOI:10.3938/jkps.65.1754
  • Choonkyu Lee; Kimyeong Lee Quantum mechanical Hamiltonians with large ground-state degeneracy, Annals of Physics, Volume 331 (2013), p. 258 | DOI:10.1016/j.aop.2013.01.003
  • Yi Li; Congjun Wu High-Dimensional Topological Insulators with Quaternionic Analytic Landau Levels, Physical Review Letters, Volume 110 (2013) no. 21 | DOI:10.1103/physrevlett.110.216802
  • Dean Rickles AdS/CFT duality and the emergence of spacetime, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, Volume 44 (2013) no. 3, p. 312 | DOI:10.1016/j.shpsb.2012.06.001
  • V. S. Bychkov; E. A. Ivanov The N=4 super Landau models, Theoretical and Mathematical Physics, Volume 174 (2013) no. 1, p. 40 | DOI:10.1007/s11232-013-0003-7
  • Yi Li; Xiangfa Zhou; Congjun Wu Two- and three-dimensional topological insulators with isotropic and parity-breaking Landau levels, Physical Review B, Volume 85 (2012) no. 12 | DOI:10.1103/physrevb.85.125122
  • Yi Li; Kenneth Intriligator; Yue Yu; Congjun Wu Isotropic Landau levels of Dirac fermions in high dimensions, Physical Review B, Volume 85 (2012) no. 8 | DOI:10.1103/physrevb.85.085132
  • Andrey Beylin; Thomas Curtright; Evgeny Ivanov; Luca Mezincescu Generalized N=2 super Landau models, Journal of High Energy Physics, Volume 2010 (2010) no. 4 | DOI:10.1007/jhep04(2010)091
  • Hyun Seok Yang; M. Sivakumar Emergent geometry from quantized spacetime, Physical Review D, Volume 82 (2010) no. 4 | DOI:10.1103/physrevd.82.045004
  • E. A. Ivanov Supersymmetrizing Landau models, Theoretical and Mathematical Physics, Volume 154 (2008) no. 3, p. 349 | DOI:10.1007/s11232-008-0032-9
  • Giovanni Landi Spin-Hall Effect with Quantum Group Symmetries, Letters in Mathematical Physics, Volume 75 (2006) no. 2, p. 187 | DOI:10.1007/s11005-005-0040-8
  • Xin Liu; Yao-zhong Zhang; Yi-shi Duan; Li-bin Fu Various topological excitations in the SO(4) gauge field in higher dimensions, Annals of Physics, Volume 318 (2005) no. 2, p. 419 | DOI:10.1016/j.aop.2005.02.001

Cité par 20 documents. Sources : Crossref

Commentaires - Politique