[L'effet Hall quantique sur
Zhang et Hu ont formulé un système de Hall quantique SU(2) sur la quatre-sphère, avec une dynamique de bord tridimensionnelle intéressante comprenant des états sans gap d'hélicité differente de zéro. Afin de comprendre la physique locale de leur modèle, nous étudions les systèmes de Hall quantique U(1) et SU(2) sur un
Zhang and Hu have formulated an SU(2) quantum Hall system on the four-sphere, with interesting three-dimensional boundary dynamics including gapless states of nonzero helicity. In order to understand the local physics of their model we study the U(1) and SU(2) quantum Hall systems on flat
Henriette Elvang 1 ; Joseph Polchinski 2
@article{CRPHYS_2003__4_3_405_0, author = {Henriette Elvang and Joseph Polchinski}, title = {The quantum {Hall} effect on $ \mathbb{R}^{4}$}, journal = {Comptes Rendus. Physique}, pages = {405--417}, publisher = {Elsevier}, volume = {4}, number = {3}, year = {2003}, doi = {10.1016/S1631-0705(03)00038-0}, language = {en}, }
Henriette Elvang; Joseph Polchinski. The quantum Hall effect on $ \mathbb{R}^{4}$. Comptes Rendus. Physique, Volume 4 (2003) no. 3, pp. 405-417. doi : 10.1016/S1631-0705(03)00038-0. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00038-0/
[1] Science, 294 (2001), p. 823 | arXiv
[2] arXiv
|[3] arXiv
|[4] Nucl. Phys. B, 0205, 2002, p. 037 | arXiv
[5] Phys. Rev., 138 (1965), p. B988
[6] Proc. Roy. Soc. London Ser. A, 173 (1939), p. 211
[7] Phys. Lett. B, 96 (1980), p. 59
[8] Phys. Rev., 135 (1964), p. B1049
[9] Prog. Theor. Phys., 36 (1972), p. 155
[10] Adv. Theor. Math. Phys., 2 (1998), p. 231 | arXiv
[11] Adv. Theor. Math. Phys., 428 (1998), p. 105 | arXiv
[12] Nucl. Phys. B, 146 (1978), p. 63
[13] Phys. Rev. B, 94 (1980), p. 135
[14] Nucl. Phys. Proc. Suppl. BC, 45 (1996), p. 1 | arXiv
- Fractional quantum Hall effect in higher dimensions, Physical Review D, Volume 111 (2025) no. 2 | DOI:10.1103/physrevd.111.025002
- Realization of an atomic quantum Hall system in four dimensions, Science, Volume 384 (2024) no. 6692, p. 223 | DOI:10.1126/science.adf8459
- Transport coefficients for higher dimensional quantum Hall effect, Physical Review B, Volume 108 (2023) no. 20 | DOI:10.1103/physrevb.108.205155
- Ergodic edge modes in the 4D quantum Hall effect, SciPost Physics, Volume 11 (2021) no. 1 | DOI:10.21468/scipostphys.11.1.016
- Analytic non-Abelian gravitating solitons in the Einstein–Yang–Mills–Higgs theory and transitions between them, The European Physical Journal C, Volume 81 (2021) no. 5 | DOI:10.1140/epjc/s10052-021-09197-3
- ADHM and the 4d quantum Hall effect, Journal of High Energy Physics, Volume 2018 (2018) no. 4 | DOI:10.1007/jhep04(2018)040
- Klein–Gordon oscillator in Kaluza–Klein theory, The European Physical Journal C, Volume 76 (2016) no. 7 | DOI:10.1140/epjc/s10052-016-4189-3
- Time-reversal invariantSU(2)Hofstadter problem in three-dimensional lattices, Physical Review B, Volume 91 (2015) no. 19 | DOI:10.1103/physrevb.91.195133
- Quantum gravity from noncommutative spacetime, Journal of the Korean Physical Society, Volume 65 (2014) no. 11, p. 1754 | DOI:10.3938/jkps.65.1754
- Quantum mechanical Hamiltonians with large ground-state degeneracy, Annals of Physics, Volume 331 (2013), p. 258 | DOI:10.1016/j.aop.2013.01.003
- High-Dimensional Topological Insulators with Quaternionic Analytic Landau Levels, Physical Review Letters, Volume 110 (2013) no. 21 | DOI:10.1103/physrevlett.110.216802
- AdS/CFT duality and the emergence of spacetime, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, Volume 44 (2013) no. 3, p. 312 | DOI:10.1016/j.shpsb.2012.06.001
- The N=4 super Landau models, Theoretical and Mathematical Physics, Volume 174 (2013) no. 1, p. 40 | DOI:10.1007/s11232-013-0003-7
- Two- and three-dimensional topological insulators with isotropic and parity-breaking Landau levels, Physical Review B, Volume 85 (2012) no. 12 | DOI:10.1103/physrevb.85.125122
- Isotropic Landau levels of Dirac fermions in high dimensions, Physical Review B, Volume 85 (2012) no. 8 | DOI:10.1103/physrevb.85.085132
- Generalized
super Landau models, Journal of High Energy Physics, Volume 2010 (2010) no. 4 | DOI:10.1007/jhep04(2010)091 - Emergent geometry from quantized spacetime, Physical Review D, Volume 82 (2010) no. 4 | DOI:10.1103/physrevd.82.045004
- Supersymmetrizing Landau models, Theoretical and Mathematical Physics, Volume 154 (2008) no. 3, p. 349 | DOI:10.1007/s11232-008-0032-9
- Spin-Hall Effect with Quantum Group Symmetries, Letters in Mathematical Physics, Volume 75 (2006) no. 2, p. 187 | DOI:10.1007/s11005-005-0040-8
- Various topological excitations in the SO(4) gauge field in higher dimensions, Annals of Physics, Volume 318 (2005) no. 2, p. 419 | DOI:10.1016/j.aop.2005.02.001
Cité par 20 documents. Sources : Crossref
Commentaires - Politique