[Diodes laser de forte luminance]
Les concepts de base et certains aspects de la modélisation des lasers semiconducteurs de haute luminance sont passés en revue. La technologie des lasers comportant une section amplificatrice évasée est décrite. Ils constituent les sources semiconductrices émettant en continu ayant la plus forte luminance dans le domaine spectral visible et proche infrarouge. Des résultats expérimentaux sont présentés pour des lasers évasés émettant à 735 nm et à 808 nm. Des puissances de 3 W ont été obtenues avec des faisceaux presque limités par la diffraction.
The basic concepts and some modelling aspects of high-brightness semiconductor lasers are reviewed. The technology of lasers with a tapered gain-region is described. They provide the highest brightness of a semiconductor source with continuous wave emission in the visible and near infrared spectral range. Experimental results are presented for tapered lasers emitting at 735 nm and 808 nm. Output powers of 3 W were achieved in nearly diffraction limited beams.
Accepté le :
Publié le :
Mot clés : Lasers semiconducteurs, Forte luminance, Forte puissance, Qualité de faisceau, Lasers évasés, Modélisation
Hans Wenzel 1 ; Bernd Sumpf 1 ; Götz Erbert 1
@article{CRPHYS_2003__4_6_649_0, author = {Hans Wenzel and Bernd Sumpf and G\"otz Erbert}, title = {High-brightness diode lasers}, journal = {Comptes Rendus. Physique}, pages = {649--661}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00074-4}, language = {en}, }
Hans Wenzel; Bernd Sumpf; Götz Erbert. High-brightness diode lasers. Comptes Rendus. Physique, Volume 4 (2003) no. 6, pp. 649-661. doi : 10.1016/S1631-0705(03)00074-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00074-4/
[1] Fiber-Optic Communication Systems, Wiley, New York, 1997
[2] Nonlinear Optical Effects and Materials (P. Günter, ed.), Series in Optical Sciences, 72, Springer, Berlin, 2000
[3] IEEE J. Select. Topics Quantum Electron., 6 (2001) (Special Issue on Lasers in Medicine and Biology)
[4] Manufacturing with novel high-power diode lasers, IEEE J. Select. Topics Quantum Electron., Volume 6 (2000), pp. 696-705
[5] Semiconductor amplifiers and lasers with tapered gain regions, Opt. Quantum Electron., Volume 28 (1996), pp. 623-645
[6] New developments in laser resonators, Proc. SPIE, Volume 1224 (1990), pp. 2-14
[7] International Organization of Standardization, ISO11146
[8] Design considerations and analytical approximations for high continuous-wave power, broad-waveguide diode lasers, Appl. Phys. Lett., Volume 74 (1999), pp. 3102-3104
[9] Beam quality of high power 800 nm broad-area laser diodes with 1 and 2 μm long optical cavity structures, Opt. Commun., Volume 192 (2001), pp. 69-75
[10] High-power, strained-layer amplifiers and lasers with tapered gain regions, IEEE Photon. Techn. Lett., Volume 5 (1993), pp. 605-608
[11] 4.5 W CW near-diffraction-limited tapered-stripe semiconductor optical amplifier, Electron. Lett., Volume 29 (1993), pp. 219-221
[12] 5-W CW diffraction-limited InGaAs broad-area flared amplifier at 970 nm, IEEE Photon. Techn. Lett., Volume 9 (1997), pp. 1217-1219
[13] R. Parke, D.F. Welch, S. O'Brien, R.J. Lang, High power monolithically integrated master-oscillator power amplifiers, presented at the Conf. Lasers and Electro-Optics (CLEO), Baltimore, USA, 1993, paper CTuI4
[14] Operating characteristics of a high-power monolithically-integrated flared amplifier master osciallator power amplifier, IEEE J. Quantum Electron., Volume 29 (1993), pp. 2052-2057
[15] 2.2-W continuous-wave, diffraction-limited monolithically integrated master oscillator power amplifier at 854 nm, IEEE Photon. Techn. Lett., Volume 9 (1997), pp. 440-442
[16] Dynamic instabilities in master oscillator power amplifier semiconductor lasers, IEEE J. Quantum Electron., Volume 34 (1998), pp. 166-170
[17] Modeling multiple-longitudinal-mode dynamics in semiconductor lasers, lasers, IEEE J. Quantum Electron., Volume 34 (1998), pp. 325-335
[18] External optical feedback effects on semiconductor injection laser properties, IEEE J. Quantum Electron., Volume 16 (1980), pp. 347-355
[19] 5W, diffraction-limited, tapered-stripe unstable resonator semiconductor laser, Electron. Lett., Volume 30 (1994), pp. 1855-1856
[20] Diffraction-limited 1.3-μm-wavelength tapered-gain-region lasers with >1-W CW output power, Techn. Lett., Volume 8 (1996), pp. 1429-1431
[21] 1.5-μm tapered-gain-region lasers with high-CW output powers, IEEE Photon. Techn. Lett., Volume 10 (1998), pp. 1377-1379
[22] High-brightness tapered semiconductor laser oscillators and amplifiers with low-modal gain epitaxial structures, IEEE Photon. Techn. Lett., Volume 10 (1998), pp. 654-656
[23] How to launch 1 W into single-mode fiber from a single 1.48 μm flared resonator, IEEE J. Select. Topics Quantum Electron., Volume 7 (2001), pp. 111-123
[24] High-power high-brightness ridge-waveguide tapered diode lasers at 940 nm, Proc. SPIE, Volume 2648 (2002), pp. 75-81
[25] High-brightness 735-nm tapered diode lasers, Electron. Lett., Volume 38 (2002), pp. 183-184
[26] 3-W high brightness tapered diode lasers at 735 nm based on tensile-strained GaAsP QWs, Proc. SPIE, Volume 4995 (2003)
[27] High power and high brightness laser diode structures using Al-free materials, Proc. SPIE, Volume 4995 (2003)
[28] V.V. Wong, S.D. DeMaars, A. Schönfelder, R. Lang, Angled-grating distributed-feedback laser with 1.2 W single-mode diffraction limited output a 1.06 μm, presented at the Conf. Lasers and Electro-Optics (CLEO) San Fransicso, USA, 1998, Technical Digest, pp. 34–35
[29] S.D. DeMaars, A. Schönfelder, V. Wong, R.J. Lang, Optical properties of angled-grating distributed feedback lasers, presented at the IEEE Internat. Semiconductor Laser Conference, Nara, Japan, 1998, Digest, pp. 57–58
[30] K. Paschke, R. Güther, J. Fricke, J. Sebastian, H. Wenzel, G. Erbert, G. Tränkle, A.P. Bogatov, A.E. Drakin, A.A. Stratonnikov, Design, fabrication and characterization of high-power angled-grating distributed lasers, presented at the IEEE Internat. Semiconductor Laser Conference, Garmisch-Partenkirchen, Germany, 2002, Digest, pp. 16–25
[31] K. Paschke, R. Güther, J. Fricke, F. Bugge, G. Erbert, G. Tränkle, High spectral brightness α-DFB lasers in the power range until 3 W at 1060 nm, Electron. Lett. (2003), accepted
[32] K. Paschke, A. Bogatov, A. Drakin, R. Güther, A. Stratonnikov, H. Wenzel, G. Erbert, G. Tränkle, Modeling and measurements of the radiative characteristics of high-power α-DFB lasers, IEEE J. Select. Topics Quantum Electron., Special Issue on Numerical Simulation of Optoelectronic Devices, 2003, accepted
[33] New Series of Landolt–Börnstein, Numerical Data and Functional Relationships in Science and Technology, Springer, Berlin
[34] Datareviews Series of Electronic Materials Information Service, INSPEC, London
[35] Semiconductor Optoelectronic Devices – Introduction to Physics and Simulation, Academic Press/Elsevier, Amsterdam, 2002
[36] A model for the calculation of the threshold current of SCH-MQW-SAS lasers, Phys. Status Solidi A, Volume 120 (1990), pp. 551-673
[37] Improved theory of the refractive-index change in quantum-well lasers, IEEE J. Select. Top. Quantum Electron., Volume 5 (1999), pp. 637-642
[38] Optimization of GaAsP-QWs for high-power diode lasers at 800 nm, Proc. SPIE, Volume 3947 (2000), pp. 32-38
[39] Low confinement factors for suppressed filaments in semiconductor lasers, IEEE J. Quantum Electron., Volume 37 (2001), pp. 1650-1653
[40] Gain spectra measurements by a variable stripe length method with current injection, Electron. Lett., Volume 33 (1997), pp. 864-865
[41] Simulation of single-mode high-power semiconductor lasers, Proc. SPIE, Volume 2693 (1996), pp. 418-429
[42] Available online: http://www-ocs.colorado.edu/SimWindows/simwin.html
[43] Calculation of combined lateral and longitudinal spatial hole burning in λ/4 shifted DFB lasers, IEEE J. Quantum Electron., Volume 29 (1993), pp. 1751-1760
[44] M. Niederhoff, Feldberechnung in Hochleistungslaserdioden, Ph.D. Thesis, München, 1996
[45] Hot-cavity modelling of high-power tapered laser diodes using wide-angle 3D FD-BPM, IEEE/LEOS Annual Meeting, Conference Proceedings, 2002, pp. 91-92
[46] A selfconsistent electrical, thermal and optical model of high brightness tapered lasers, Proc. SPIE, Volume 4646 (2002), pp. 355-366
[47] S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T.M. Benson, G. Erbert, I. Esquivias, E.C. Larkins, Nonlinear properties of tapered laser cavities, IEEE J. Select. Topics Quantum Electron., Special Issue on Numerical Simulation of Optoelectronic Devices (2003), submitted
[48] Modeling of the performance of high-brightness tapered lasers, Proc. SPIE, Volume 3944 (2000), pp. 395-406
[49] Simulation of the generation of high-power pulses in the GHz range with three-section DBR lasers, IEE Proc. Optoelectron., Volume 149 (2002), pp. 152-160
[50] Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory, IEEE J. Quantum Electron., Volume 35 (1999), pp. 320-331
[51] High-Power Diode Lasers (R. Diehl, ed.), Topics in Applied Physics, 78, Springer, Berlin, 2000
[52] Influence of oxygen in AlGaAs-based laser structures with Al-free active region on device properties, J. Electron. Mater., Volume 30 (2001), pp. 1421-1424
[53] Mounting of high power laser diodes on boron nitride heat sinks using an optimized Au/Sn metallurgy, IEEE Trans. Adv. Packaging, Volume 24 (2001), pp. 434-441
[54] Photodynamic therapy in dermatology, Eur. J. Dermatol., Volume 10 (2000), pp. 567-568
[55] J. Select. Top. Quantum Electron., 5 (1999), pp. 780-784
[56] High brightness 735 nm tapered lasers – optimisation of the laser geometry, Optical and Quantum Electronics, Volume 35 (2003), pp. 521-532
Cité par Sources :
Commentaires - Politique