[Diodes laser de forte luminance]
The basic concepts and some modelling aspects of high-brightness semiconductor lasers are reviewed. The technology of lasers with a tapered gain-region is described. They provide the highest brightness of a semiconductor source with continuous wave emission in the visible and near infrared spectral range. Experimental results are presented for tapered lasers emitting at 735 nm and 808 nm. Output powers of 3 W were achieved in nearly diffraction limited beams.
Les concepts de base et certains aspects de la modélisation des lasers semiconducteurs de haute luminance sont passés en revue. La technologie des lasers comportant une section amplificatrice évasée est décrite. Ils constituent les sources semiconductrices émettant en continu ayant la plus forte luminance dans le domaine spectral visible et proche infrarouge. Des résultats expérimentaux sont présentés pour des lasers évasés émettant à 735 nm et à 808 nm. Des puissances de 3 W ont été obtenues avec des faisceaux presque limités par la diffraction.
Accepté le :
Publié le :
Mots-clés : Lasers semiconducteurs, Forte luminance, Forte puissance, Qualité de faisceau, Lasers évasés, Modélisation
Hans Wenzel 1 ; Bernd Sumpf 1 ; Götz Erbert 1
@article{CRPHYS_2003__4_6_649_0, author = {Hans Wenzel and Bernd Sumpf and G\"otz Erbert}, title = {High-brightness diode lasers}, journal = {Comptes Rendus. Physique}, pages = {649--661}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00074-4}, language = {en}, }
Hans Wenzel; Bernd Sumpf; Götz Erbert. High-brightness diode lasers. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 649-661. doi : 10.1016/S1631-0705(03)00074-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00074-4/
[1] Fiber-Optic Communication Systems, Wiley, New York, 1997
[2] Nonlinear Optical Effects and Materials (P. Günter, ed.), Series in Optical Sciences, 72, Springer, Berlin, 2000
[3] IEEE J. Select. Topics Quantum Electron., 6 (2001) (Special Issue on Lasers in Medicine and Biology)
[4] Manufacturing with novel high-power diode lasers, IEEE J. Select. Topics Quantum Electron., Volume 6 (2000), pp. 696-705
[5] Semiconductor amplifiers and lasers with tapered gain regions, Opt. Quantum Electron., Volume 28 (1996), pp. 623-645
[6] New developments in laser resonators, Proc. SPIE, Volume 1224 (1990), pp. 2-14
[7] International Organization of Standardization, ISO11146
[8] Design considerations and analytical approximations for high continuous-wave power, broad-waveguide diode lasers, Appl. Phys. Lett., Volume 74 (1999), pp. 3102-3104
[9] Beam quality of high power 800 nm broad-area laser diodes with 1 and 2 μm long optical cavity structures, Opt. Commun., Volume 192 (2001), pp. 69-75
[10] High-power, strained-layer amplifiers and lasers with tapered gain regions, IEEE Photon. Techn. Lett., Volume 5 (1993), pp. 605-608
[11] 4.5 W CW near-diffraction-limited tapered-stripe semiconductor optical amplifier, Electron. Lett., Volume 29 (1993), pp. 219-221
[12] 5-W CW diffraction-limited InGaAs broad-area flared amplifier at 970 nm, IEEE Photon. Techn. Lett., Volume 9 (1997), pp. 1217-1219
[13] R. Parke, D.F. Welch, S. O'Brien, R.J. Lang, High power monolithically integrated master-oscillator power amplifiers, presented at the Conf. Lasers and Electro-Optics (CLEO), Baltimore, USA, 1993, paper CTuI4
[14] Operating characteristics of a high-power monolithically-integrated flared amplifier master osciallator power amplifier, IEEE J. Quantum Electron., Volume 29 (1993), pp. 2052-2057
[15] 2.2-W continuous-wave, diffraction-limited monolithically integrated master oscillator power amplifier at 854 nm, IEEE Photon. Techn. Lett., Volume 9 (1997), pp. 440-442
[16] Dynamic instabilities in master oscillator power amplifier semiconductor lasers, IEEE J. Quantum Electron., Volume 34 (1998), pp. 166-170
[17] Modeling multiple-longitudinal-mode dynamics in semiconductor lasers, lasers, IEEE J. Quantum Electron., Volume 34 (1998), pp. 325-335
[18] External optical feedback effects on semiconductor injection laser properties, IEEE J. Quantum Electron., Volume 16 (1980), pp. 347-355
[19] 5W, diffraction-limited, tapered-stripe unstable resonator semiconductor laser, Electron. Lett., Volume 30 (1994), pp. 1855-1856
[20] Diffraction-limited 1.3-μm-wavelength tapered-gain-region lasers with >1-W CW output power, Techn. Lett., Volume 8 (1996), pp. 1429-1431
[21] 1.5-μm tapered-gain-region lasers with high-CW output powers, IEEE Photon. Techn. Lett., Volume 10 (1998), pp. 1377-1379
[22] High-brightness tapered semiconductor laser oscillators and amplifiers with low-modal gain epitaxial structures, IEEE Photon. Techn. Lett., Volume 10 (1998), pp. 654-656
[23] How to launch 1 W into single-mode fiber from a single 1.48 μm flared resonator, IEEE J. Select. Topics Quantum Electron., Volume 7 (2001), pp. 111-123
[24] High-power high-brightness ridge-waveguide tapered diode lasers at 940 nm, Proc. SPIE, Volume 2648 (2002), pp. 75-81
[25] High-brightness 735-nm tapered diode lasers, Electron. Lett., Volume 38 (2002), pp. 183-184
[26] 3-W high brightness tapered diode lasers at 735 nm based on tensile-strained GaAsP QWs, Proc. SPIE, Volume 4995 (2003)
[27] High power and high brightness laser diode structures using Al-free materials, Proc. SPIE, Volume 4995 (2003)
[28] V.V. Wong, S.D. DeMaars, A. Schönfelder, R. Lang, Angled-grating distributed-feedback laser with 1.2 W single-mode diffraction limited output a 1.06 μm, presented at the Conf. Lasers and Electro-Optics (CLEO) San Fransicso, USA, 1998, Technical Digest, pp. 34–35
[29] S.D. DeMaars, A. Schönfelder, V. Wong, R.J. Lang, Optical properties of angled-grating distributed feedback lasers, presented at the IEEE Internat. Semiconductor Laser Conference, Nara, Japan, 1998, Digest, pp. 57–58
[30] K. Paschke, R. Güther, J. Fricke, J. Sebastian, H. Wenzel, G. Erbert, G. Tränkle, A.P. Bogatov, A.E. Drakin, A.A. Stratonnikov, Design, fabrication and characterization of high-power angled-grating distributed lasers, presented at the IEEE Internat. Semiconductor Laser Conference, Garmisch-Partenkirchen, Germany, 2002, Digest, pp. 16–25
[31] K. Paschke, R. Güther, J. Fricke, F. Bugge, G. Erbert, G. Tränkle, High spectral brightness α-DFB lasers in the power range until 3 W at 1060 nm, Electron. Lett. (2003), accepted
[32] K. Paschke, A. Bogatov, A. Drakin, R. Güther, A. Stratonnikov, H. Wenzel, G. Erbert, G. Tränkle, Modeling and measurements of the radiative characteristics of high-power α-DFB lasers, IEEE J. Select. Topics Quantum Electron., Special Issue on Numerical Simulation of Optoelectronic Devices, 2003, accepted
[33] New Series of Landolt–Börnstein, Numerical Data and Functional Relationships in Science and Technology, Springer, Berlin
[34] Datareviews Series of Electronic Materials Information Service, INSPEC, London
[35] Semiconductor Optoelectronic Devices – Introduction to Physics and Simulation, Academic Press/Elsevier, Amsterdam, 2002
[36] A model for the calculation of the threshold current of SCH-MQW-SAS lasers, Phys. Status Solidi A, Volume 120 (1990), pp. 551-673
[37] Improved theory of the refractive-index change in quantum-well lasers, IEEE J. Select. Top. Quantum Electron., Volume 5 (1999), pp. 637-642
[38] Optimization of GaAsP-QWs for high-power diode lasers at 800 nm, Proc. SPIE, Volume 3947 (2000), pp. 32-38
[39] Low confinement factors for suppressed filaments in semiconductor lasers, IEEE J. Quantum Electron., Volume 37 (2001), pp. 1650-1653
[40] Gain spectra measurements by a variable stripe length method with current injection, Electron. Lett., Volume 33 (1997), pp. 864-865
[41] Simulation of single-mode high-power semiconductor lasers, Proc. SPIE, Volume 2693 (1996), pp. 418-429
[42] Available online: http://www-ocs.colorado.edu/SimWindows/simwin.html
[43] Calculation of combined lateral and longitudinal spatial hole burning in λ/4 shifted DFB lasers, IEEE J. Quantum Electron., Volume 29 (1993), pp. 1751-1760
[44] M. Niederhoff, Feldberechnung in Hochleistungslaserdioden, Ph.D. Thesis, München, 1996
[45] Hot-cavity modelling of high-power tapered laser diodes using wide-angle 3D FD-BPM, IEEE/LEOS Annual Meeting, Conference Proceedings, 2002, pp. 91-92
[46] A selfconsistent electrical, thermal and optical model of high brightness tapered lasers, Proc. SPIE, Volume 4646 (2002), pp. 355-366
[47] S. Sujecki, L. Borruel, J. Wykes, P. Moreno, B. Sumpf, P. Sewell, H. Wenzel, T.M. Benson, G. Erbert, I. Esquivias, E.C. Larkins, Nonlinear properties of tapered laser cavities, IEEE J. Select. Topics Quantum Electron., Special Issue on Numerical Simulation of Optoelectronic Devices (2003), submitted
[48] Modeling of the performance of high-brightness tapered lasers, Proc. SPIE, Volume 3944 (2000), pp. 395-406
[49] Simulation of the generation of high-power pulses in the GHz range with three-section DBR lasers, IEE Proc. Optoelectron., Volume 149 (2002), pp. 152-160
[50] Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory, IEEE J. Quantum Electron., Volume 35 (1999), pp. 320-331
[51] High-Power Diode Lasers (R. Diehl, ed.), Topics in Applied Physics, 78, Springer, Berlin, 2000
[52] Influence of oxygen in AlGaAs-based laser structures with Al-free active region on device properties, J. Electron. Mater., Volume 30 (2001), pp. 1421-1424
[53] Mounting of high power laser diodes on boron nitride heat sinks using an optimized Au/Sn metallurgy, IEEE Trans. Adv. Packaging, Volume 24 (2001), pp. 434-441
[54] Photodynamic therapy in dermatology, Eur. J. Dermatol., Volume 10 (2000), pp. 567-568
[55] J. Select. Top. Quantum Electron., 5 (1999), pp. 780-784
[56] High brightness 735 nm tapered lasers – optimisation of the laser geometry, Optical and Quantum Electronics, Volume 35 (2003), pp. 521-532
- , CLEO 2023 (2023), p. AW3H.3 | DOI:10.1364/cleo_at.2023.aw3h.3
- Theoretical and experimental research on crosstalk in spectral beam combining of a laser diode bar with a high fill factor, Applied Optics, Volume 60 (2021) no. 26, p. 8213 | DOI:10.1364/ao.438280
- Micro-integrated high-power narrow-linewidth external-cavity tapered diode laser at 808 nm, Applied Optics, Volume 59 (2020) no. 2, p. 295 | DOI:10.1364/ao.381439
- Efficient Tm:YAG and Tm:LuAG lasers pumped by 681 nm tapered diodes, Applied Optics, Volume 58 (2019) no. 11, p. 2973 | DOI:10.1364/ao.58.002973
- , High-Power Diode Laser Technology XVII (2019), p. 21 | DOI:10.1117/12.2508443
- High-power single-longitudinal-mode double-tapered gain-coupled distributed feedback semiconductor lasers based on periodic anodes defined by i-line lithography, Optics Communications, Volume 443 (2019), p. 150 | DOI:10.1016/j.optcom.2019.02.073
- , Laser Resonators, Microresonators, and Beam Control XX (2018), p. 44 | DOI:10.1117/12.2288425
- Yellow laser emission at 578 nm by frequency doubling with diode lasers of high radiance at 1156 nm, Applied Physics B, Volume 123 (2017) no. 4 | DOI:10.1007/s00340-017-6700-4
- High-Brightness Tapered Lasers, Handbook of Optoelectronic Device Modeling and Simulation (2017), p. 59 | DOI:10.1201/9781315152318-5
- Tapered Semiconductor Optical Amplifiers, Handbook of Optoelectronic Device Modeling and Simulation (2017), p. 697 | DOI:10.1201/9781315152301-28
- , High-Power, High-Energy, and High-Intensity Laser Technology III, Volume 10238 (2017), p. 102380X | DOI:10.1117/12.2264770
- Reduction of Optical Feedback Originating From Ferroelectric Domains of Periodically Poled Crystals, IEEE Journal of Quantum Electronics, Volume 53 (2017) no. 5, p. 1 | DOI:10.1109/jqe.2017.2748960
- Modulation Performance of Three-Section Integrated MOPAs for Pseudorandom Lidar, IEEE Photonics Technology Letters, Volume 29 (2017) no. 17, p. 1486 | DOI:10.1109/lpt.2017.2730921
- , High-Power Diode Laser Technology and Applications XIV, Volume 9733 (2016), p. 97330I | DOI:10.1117/12.2211613
- Rear-side resonator architecture for the passive coherent combining of high-brightness laser diodes, Optics Letters, Volume 41 (2016) no. 5, p. 950 | DOI:10.1364/ol.41.000950
- Understanding laser beam brightness: A review and new prospective in material processing, Optics Laser Technology, Volume 75 (2015), p. 40 | DOI:10.1016/j.optlastec.2015.06.003
- Diode laser based light sources for biomedical applications, Laser Photonics Reviews, Volume 7 (2013) no. 5, p. 605 | DOI:10.1002/lpor.201200051
- Role of laser beam radiance in different ceramic processing: A two wavelengths comparison, Optics Laser Technology, Volume 54 (2013), p. 380 | DOI:10.1016/j.optlastec.2013.06.011
- High-brightness 13 μm InAs/GaAs quantum dot tapered laser with high temperature stability, Optics Letters, Volume 37 (2012) no. 19, p. 4071 | DOI:10.1364/ol.37.004071
- The influence of brightness during laser surface treatment of Si3N4 engineering ceramics, Optics and Lasers in Engineering, Volume 50 (2012) no. 12, p. 1746 | DOI:10.1016/j.optlaseng.2012.07.006
- , 2009 Conference on Lasers Electro Optics The Pacific Rim Conference on Lasers and Electro-Optics (2009), p. 1 | DOI:10.1109/cleopr.2009.5292354
- , CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009), p. 1 | DOI:10.1109/cleoe-eqec.2009.5192845
- Beam Properties of 980-nm Tapered Lasers With Separate Contacts: Experiments and Simulations, IEEE Journal of Quantum Electronics, Volume 45 (2009) no. 1, p. 42 | DOI:10.1109/jqe.2008.2005358
- Measurement and Simulation of Distributed-Feedback Tapered Master-Oscillator Power Amplifiers, IEEE Journal of Quantum Electronics, Volume 45 (2009) no. 6, p. 609 | DOI:10.1109/jqe.2009.2013115
- High-Brightness Quantum Well Tapered Lasers, IEEE Journal of Selected Topics in Quantum Electronics, Volume 15 (2009) no. 3, p. 1009 | DOI:10.1109/jstqe.2008.2010952
- , 2008 IEEE PhotonicsGlobal@Singapore (2008), p. 1 | DOI:10.1109/ipgc.2008.4781514
- Wavelength stabilization of extended-cavity tapered lasers with volume Bragg gratings, Applied Physics B, Volume 91 (2008) no. 3-4, p. 493 | DOI:10.1007/s00340-008-3034-2
- NUMERICAL ALGORITHMS FOR SIMULATION OF MULTISECTION LASERS BY USING TRAVELING WAVE MODEL, Mathematical Modelling and Analysis, Volume 13 (2008) no. 3, p. 327 | DOI:10.3846/1392-6292.2008.13.327-348
- Design strategies to increase the brightness of gain guided tapered lasers, Optical and Quantum Electronics, Volume 40 (2008) no. 2-4, p. 175 | DOI:10.1007/s11082-008-9187-8
- , 2007 Spanish Conference on Electron Devices (2007), p. 56 | DOI:10.1109/sced.2007.383956
- , Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (2007), p. JWA5 | DOI:10.1364/bgpp.2007.jwa5
- Enhanced Brightness of Tapered Laser Diodes Based on an Asymmetric Epitaxial Design, IEEE Photonics Technology Letters, Volume 19 (2007) no. 20, p. 1640 | DOI:10.1109/lpt.2007.905083
- High-power 808-nm tapered diode lasers with nearly diffraction-limited beam quality of M/sup 2/=1.9 at P=4.4 W, IEEE Photonics Technology Letters, Volume 18 (2006) no. 4, p. 601 | DOI:10.1109/lpt.2006.870152
- , NUSOD '05. Proceedings of the 5th International Conference on Numerical Simulation of Optoelectronic Devices, 2005. (2005), p. 31 | DOI:10.1109/nusod.2005.1518120
- , Proceedings of the 4th International Conference on Numerical Simulation of Optoelectronic Devices, 2004. NUSOD '04. (2004), p. 9 | DOI:10.1109/nusod.2004.1345086
- Nonlinear properties of tapered laser cavities, IEEE Journal of Selected Topics in Quantum Electronics, Volume 9 (2003) no. 3, p. 823 | DOI:10.1109/jstqe.2003.818843
Cité par 36 documents. Sources : Crossref
Commentaires - Politique