[Avancées récentes des lasers semiconducteurs à boı̂te quantique]
Nous avons assisté ces dernières années à un progrès décisif dans la performance des lasers à boı̂te quantique, qui leur a ouvert tout un champ d'applications nouvelles. Les progrès récents dans la compréhension et la réalisation des lasers à boı̂te quantique sont passés en revue.
Within the last few years a breakthrough in the device performance of quantum dot lasers occurred and new application areas were opened. Recent advances in the understanding and realisation of quantum dot lasers are reviewed.
Accepté le :
Publié le :
Mot clés : Laser à boı̂te quantique, Élargissement inhomogène, Stabilisation en longueur d'onde, Gain spectral, Largeur de raie, Laser de haute puissance, Boı̂tes auto-assemblées, Amplification multi-longueur d'onde
Johann Peter Reithmaier 1 ; Alfred Forchel 1
@article{CRPHYS_2003__4_6_611_0, author = {Johann Peter Reithmaier and Alfred Forchel}, title = {Recent advances in semiconductor quantum-dot lasers}, journal = {Comptes Rendus. Physique}, pages = {611--619}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00075-6}, language = {en}, }
Johann Peter Reithmaier; Alfred Forchel. Recent advances in semiconductor quantum-dot lasers. Comptes Rendus. Physique, Volume 4 (2003) no. 6, pp. 611-619. doi : 10.1016/S1631-0705(03)00075-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00075-6/
[1] Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett., Volume 40 (1982), pp. 939-941
[2] Gain and the threshold of three dimensional quantum-box lasers, IEEE J. Quantum Electron., Volume 22 (1986), pp. 1915-1921
[3] Low-threshold injection lasers based on vertically coupled quantum dots, J. Crystal Growth, Volume 175 (1997), pp. 689-695
[4] 1.3 μm room-temperature GaAs-based quantum dot laser, Appl. Phys. Lett., Volume 73 (1998), pp. 2564-2566
[5] Optical characteristics of 1.24 μm InAs quantum dot laser diodes, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 931-933
[6] Low-threshold current density 1.3 μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure, IEEE Photon. Technol. Lett., Volume 12 (2000), pp. 591-593
[7] 1.3 μm GaAs-based laser using quantum dots obtained by activated spinodal decomposition, Electron. Lett., Volume 35 (1999), pp. 898-899
[8] High-performance GaInAs/GaAs quantum-dot lasers based on a single active layer, Appl. Phys. Lett., Volume 74 (1999), pp. 2915-2917
[9] InGaAs quantum dot lasers with submilliamp thresholds and ultra-low threshold current density below room temperature, Electron. Lett., Volume 36 (2000), pp. 1283-1284
[10] Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well, Electron. Lett., Volume 35 (1999), pp. 1163-1165
[11] Highly efficient GaInAs/(Al)GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers, Appl. Phys. Lett., Volume 77 (2000), pp. 1419-1421
[12] High performance 980 nm quantum dot lasers for high power applications, Electron. Lett., Volume 37 (2001), pp. 353-354
[13] Progress in Quantum Dot Lasers: 1100 nm, 1300 nm, and high power applications, Japan J. Appl. Phys., Volume 39 (2000), pp. 2341-2343
[14] Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity, IEEE Photon. Technol. Lett., Volume 12 (2000), pp. 1120-1122
[15] 1.3 μm CW lasing characteristics of self-assembled InGaAs–GaAs quantum dots, IEEE J. Quant. Electron., Volume 36 (2000), p. 472
[16] InGaAs/AlGaAs quantum dot DFB lasers operating up to 213 °C, Electron. Lett., Volume 35 (1999), pp. 2036-2037
[17] Gain and linewidth enhancement factor in InAs quantum-dot laser diodes, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 1527-1529
[18] Low chirp observed in directly modulated quantum dot lasers, IEEE Photon. Technol. Lett., Volume 10 (2000), pp. 1298-1300
[19] High performance 1.3 μm quantum-dot lasers, Japan J. Appl. Phys., Volume 41 (2002), pp. 1158-1161
[20] High-power GaInAs/(Al)GaAs quantum dot lasers with optimised waveguide design for high brightness applications, Int. Semicond. Laser Conf., Garmisch-Partenkirchen, Germany, September, 2002
[21] Correlation between the gain profile and the temperature-induced wavelength-shift of quantum dot lasers, Appl. Phys. Lett., Volume 81 (2002) no. 2, pp. 217-219
[22] 980 nm quantum dot lasers for high power applications, Optoelectronics, 2002, Symposium on Novel In-Plane Semiconductor Lasers VI (OE13), Part of Photonics West, San Jose, CA, USA, January 2002 (SPIE Proc.), Volume 4651 (2002), pp. 294-304
[23] Long wavelength InP based quantum dot lasers, IEEE Photon. Technol. Lett., Volume 14 (2002), pp. 735-737
[24] Performance and physics of quantum-dot lasers with self-assembled columnar-shaped and 1.3 μm emitting InGaAs quantum dots, IEEE J. Sel. Top. Quant. Electron., Volume 6 (2000) no. 3, pp. 462-474
[25] Homogeneous linewidth broadening in a In0.5 Ga0.5As/GaAs single quantum dot at room temperature investigated using a highly sensitive near-field scanning optical microscope, Phys. Rev. B, Volume 63 (2001), p. 121304
[26] Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature, Appl. Phys. Lett., Volume 81 (2002), p. 3055
[27] Filamentation and linewidth enhancement factor in InGaAs quantum dot lasers, Appl. Phys. Lett., Volume 81 (2002), p. 3251
[28] Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states, Phys. Rev. Lett., Volume 82 (1999), p. 4114
[29] Efficient quantum well to quantum dot tunnelling: Analytical solutions, Appl. Phys. Lett., Volume 80 (2002), p. 1270
[30] 1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 °C, Appl. Phys. Lett., Volume 80 (2002), p. 3277
[31] The role of p-doping and the density of states on the modulation response of quantum dot lasers, Appl. Phys. Lett., Volume 80 (2002), p. 2758
[32] Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices, IEEE Photon. Technol. Lett., Volume 13 (2001), p. 541
[33] Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices, IEEE J. Quant. Electron., Volume 37 (2001), p. 1059
[34] Pattern-effect-free semiconductor optical amplifier achieved using quantum dots, Electron. Lett., Volume 38 (2002), p. 1139
[35] High temperature operating 1.3 μm quantum-dot lasers for telecommunication applications, IEEE Photon. Technol. Lett., Volume 13 (2001), pp. 764-766
[36] Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3 μm, J. Crystal Growth, Volume 251 (2003), pp. 742-747
[37] Room-temperature operation of InAs quantum-dash lasers on InP (001), IEEE Photon. Technol. Lett., Volume 13 (2001), pp. 767-769
[38] Epitaxial growth of 1.55 μm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications, J. Crystal Growth, Volume 251 (2003), pp. 248-252
[39] InAs/InP 1550 nm quantum dash semiconductor optical amplifiers, Electron. Lett., Volume 38 (2002) no. 22, pp. 1350-1351
Cité par Sources :
Commentaires - Politique