Comptes Rendus
Recent advances in semiconductor quantum-dot lasers
[Avancées récentes des lasers semiconducteurs à boı̂te quantique]
Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 611-619.

Nous avons assisté ces dernières années à un progrès décisif dans la performance des lasers à boı̂te quantique, qui leur a ouvert tout un champ d'applications nouvelles. Les progrès récents dans la compréhension et la réalisation des lasers à boı̂te quantique sont passés en revue.

Within the last few years a breakthrough in the device performance of quantum dot lasers occurred and new application areas were opened. Recent advances in the understanding and realisation of quantum dot lasers are reviewed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(03)00075-6
Keywords: Quantum dot laser, Inhomogeneous broadening, Wavelength stabilisation, Spectral gain, Narrow linewidth, High power laser, Self-assembled dots, Multi-wavelength amplification
Mots-clés : Laser à boı̂te quantique, Élargissement inhomogène, Stabilisation en longueur d'onde, Gain spectral, Largeur de raie, Laser de haute puissance, Boı̂tes auto-assemblées, Amplification multi-longueur d'onde

Johann Peter Reithmaier 1 ; Alfred Forchel 1

1 Technische Physik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
@article{CRPHYS_2003__4_6_611_0,
     author = {Johann Peter Reithmaier and Alfred Forchel},
     title = {Recent advances in semiconductor quantum-dot lasers},
     journal = {Comptes Rendus. Physique},
     pages = {611--619},
     publisher = {Elsevier},
     volume = {4},
     number = {6},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00075-6},
     language = {en},
}
TY  - JOUR
AU  - Johann Peter Reithmaier
AU  - Alfred Forchel
TI  - Recent advances in semiconductor quantum-dot lasers
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 611
EP  - 619
VL  - 4
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00075-6
LA  - en
ID  - CRPHYS_2003__4_6_611_0
ER  - 
%0 Journal Article
%A Johann Peter Reithmaier
%A Alfred Forchel
%T Recent advances in semiconductor quantum-dot lasers
%J Comptes Rendus. Physique
%D 2003
%P 611-619
%V 4
%N 6
%I Elsevier
%R 10.1016/S1631-0705(03)00075-6
%G en
%F CRPHYS_2003__4_6_611_0
Johann Peter Reithmaier; Alfred Forchel. Recent advances in semiconductor quantum-dot lasers. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 611-619. doi : 10.1016/S1631-0705(03)00075-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00075-6/

[1] Y. Arakawa; H. Sakaki Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett., Volume 40 (1982), pp. 939-941

[2] M. Asada; Y. Miyamoto; Y. Suematsu Gain and the threshold of three dimensional quantum-box lasers, IEEE J. Quantum Electron., Volume 22 (1986), pp. 1915-1921

[3] V.M. Ustinov; A.Y. Egorov; A.R. Kovsh; A.E. Zhukov; M.V. Maximov; A.F. Tsatsulinikov; N.Y. Gordeev; S.V. Zaitsev; Y.M. Shernyakov; N.A. Bert; P.S. Kop'ev; Z.I. Alferov; N.N. Ledentsov; J. Boehrer; D. Bimberg; A.O. Kosogov; P. Werner; U. Goesele Low-threshold injection lasers based on vertically coupled quantum dots, J. Crystal Growth, Volume 175 (1997), pp. 689-695

[4] D.L. Huffaker; G. Park; Z. Zhou; O.B. Shchekin; D.G. Deppe 1.3 μm room-temperature GaAs-based quantum dot laser, Appl. Phys. Lett., Volume 73 (1998), pp. 2564-2566

[5] L.F. Lester; A. Stintz; H. Li; T.C. Newell; E.A. Pease; B.A. Fuchs; K.J. Malloy Optical characteristics of 1.24 μm InAs quantum dot laser diodes, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 931-933

[6] A. Stintz; G.T. Liu; H. Li; L.F. Lester; K.J. Malloy Low-threshold current density 1.3 μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure, IEEE Photon. Technol. Lett., Volume 12 (2000), pp. 591-593

[7] Y.M. Shernyakov; D.A. Bedarev; E.Y. Kondrat'eva; P.S. Kop'ev; A.R. Kovsh; N.A. Maleev; M.V. Maximov; S.S. Mikhrin; A.F. Tsatsul'nikov; V.M. Ustinov; B.V. Volovik; A.E. Zhukov; Z.J. Alferov; N.N. Ledentsov; D. Bimberg 1.3 μm GaAs-based laser using quantum dots obtained by activated spinodal decomposition, Electron. Lett., Volume 35 (1999), pp. 898-899

[8] F. Schäfer; J.P. Reithmaier; A. Forchel High-performance GaInAs/GaAs quantum-dot lasers based on a single active layer, Appl. Phys. Lett., Volume 74 (1999), pp. 2915-2917

[9] G. Park; O.B. Shchekin; D.L. Huffaker; D.G. Deppe InGaAs quantum dot lasers with submilliamp thresholds and ultra-low threshold current density below room temperature, Electron. Lett., Volume 36 (2000), pp. 1283-1284

[10] G.T. Liu; A. Stintz; H. Li; K.J. Malloy; L.F. Lester Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well, Electron. Lett., Volume 35 (1999), pp. 1163-1165

[11] F. Klopf; J.P. Reithmaier; A. Forchel Highly efficient GaInAs/(Al)GaAs quantum-dot lasers based on a single active layer versus 980 nm high-power quantum-well lasers, Appl. Phys. Lett., Volume 77 (2000), pp. 1419-1421

[12] F. Klopf; J.P. Reithmaier; A. Forchel; P. Collot; M. Krakowski High performance 980 nm quantum dot lasers for high power applications, Electron. Lett., Volume 37 (2001), pp. 353-354

[13] M. Grundmann; F. Heinrichsdorff; N.N. Ledentsov; C. Ribbat; D. Bimberg; A.E. Zhukov; A.R. Kovsh; M.V. Maximov; Y.M. Shernyakov; D.A. Lifshits; V.M. Ustinov; Z.J. Alferov Progress in Quantum Dot Lasers: 1100 nm, 1300 nm, and high power applications, Japan J. Appl. Phys., Volume 39 (2000), pp. 2341-2343

[14] O.B. Shchekin; G. Park; D.L. Huffaker; Q. Mo; D.G. Deppe Low-threshold continuous-wave two-stack quantum-dot laser with reduced temperature sensitivity, IEEE Photon. Technol. Lett., Volume 12 (2000), pp. 1120-1122

[15] K. Mukai; Y. Nakata; K. Otsubo; M. Sugawara; N. Yokoyama; H. Ishikawa 1.3 μm CW lasing characteristics of self-assembled InGaAs–GaAs quantum dots, IEEE J. Quant. Electron., Volume 36 (2000), p. 472

[16] M. Kamp; M. Schmitt; J. Hofmann; F. Schäfer; J.P. Reithmaier; A. Forchel InGaAs/AlGaAs quantum dot DFB lasers operating up to 213 °C, Electron. Lett., Volume 35 (1999), pp. 2036-2037

[17] T.C. Newell; D.J. Bossert; A. Stintz; B. Fuchs; K.J. Malloy; L.F. Lester Gain and linewidth enhancement factor in InAs quantum-dot laser diodes, IEEE Photon. Technol. Lett., Volume 11 (1999), pp. 1527-1529

[18] H. Saito; K. Nishi; A. Kamei; S. Sogou Low chirp observed in directly modulated quantum dot lasers, IEEE Photon. Technol. Lett., Volume 10 (2000), pp. 1298-1300

[19] R. Krebs; F. Klopf; J.P. Reithmaier; A. Forchel High performance 1.3 μm quantum-dot lasers, Japan J. Appl. Phys., Volume 41 (2002), pp. 1158-1161

[20] S. Deubert; F. Klopf; J.P. Reithmaier; A. Forchel High-power GaInAs/(Al)GaAs quantum dot lasers with optimised waveguide design for high brightness applications, Int. Semicond. Laser Conf., Garmisch-Partenkirchen, Germany, September, 2002

[21] F. Klopf; S. Deubert; J.P. Reithmaier; A. Forchel Correlation between the gain profile and the temperature-induced wavelength-shift of quantum dot lasers, Appl. Phys. Lett., Volume 81 (2002) no. 2, pp. 217-219

[22] F. Klopf; St. Deubert; J.P. Reithmaier; A. Forchel; P. Collot; M. Krakowski 980 nm quantum dot lasers for high power applications, Optoelectronics, 2002, Symposium on Novel In-Plane Semiconductor Lasers VI (OE13), Part of Photonics West, San Jose, CA, USA, January 2002 (SPIE Proc.), Volume 4651 (2002), pp. 294-304

[23] R. Schwertberger; D. Gold; J.P. Reithmaier; A. Forchel Long wavelength InP based quantum dot lasers, IEEE Photon. Technol. Lett., Volume 14 (2002), pp. 735-737

[24] M. Sugawara; K. Mukai; Y. Nakata; K. Otsubo; H. Ishikawa Performance and physics of quantum-dot lasers with self-assembled columnar-shaped and 1.3 μm emitting InGaAs quantum dots, IEEE J. Sel. Top. Quant. Electron., Volume 6 (2000) no. 3, pp. 462-474

[25] K. Matsuda; K. Ikeda; T. Saiki; H. Tsuchiya; H. Saito; K. Nishi Homogeneous linewidth broadening in a In0.5 Ga0.5As/GaAs single quantum dot at room temperature investigated using a highly sensitive near-field scanning optical microscope, Phys. Rev. B, Volume 63 (2001), p. 121304

[26] S. Gosh; S. Pradhan; P. Bhattacharya Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature, Appl. Phys. Lett., Volume 81 (2002), p. 3055

[27] P.M. Smowton; E.J. Pearce; H.C. Schneider; W.W. Chow; M. Hopkinson Filamentation and linewidth enhancement factor in InGaAs quantum dot lasers, Appl. Phys. Lett., Volume 81 (2002), p. 3251

[28] Y. Toda; O. Moriwaki; M. Nishioka; Y. Arakawa Efficient carrier relaxation mechanism in InGaAs/GaAs self-assembled quantum dots based on the existence of continuum states, Phys. Rev. Lett., Volume 82 (1999), p. 4114

[29] S.L. Chuang; N. Holonyak Efficient quantum well to quantum dot tunnelling: Analytical solutions, Appl. Phys. Lett., Volume 80 (2002), p. 1270

[30] O.B. Shchekin; D.G. Deppe 1.3 μm InAs quantum dot laser with T0=161 K from 0 to 80 °C, Appl. Phys. Lett., Volume 80 (2002), p. 3277

[31] O.B. Shchekin; D.G. Deppe The role of p-doping and the density of states on the modulation response of quantum dot lasers, Appl. Phys. Lett., Volume 80 (2002), p. 2758

[32] T.W. Berg; S. Bischoff; I. Magnusdottir; J. Mork Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices, IEEE Photon. Technol. Lett., Volume 13 (2001), p. 541

[33] T. Akiyama; H. Kuwatsuka; T. Simoyama; Y. Nakata; K. Mukai; M. Sugawara; O. Wada; H. Ishikawa Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices, IEEE J. Quant. Electron., Volume 37 (2001), p. 1059

[34] T. Akiyama; N. Hatori; Y. Nakata; H. Ebe; M. Sugawara Pattern-effect-free semiconductor optical amplifier achieved using quantum dots, Electron. Lett., Volume 38 (2002), p. 1139

[35] F. Klopf; R. Krebs; J.P. Reithmaier; A. Forchel High temperature operating 1.3 μm quantum-dot lasers for telecommunication applications, IEEE Photon. Technol. Lett., Volume 13 (2001), pp. 764-766

[36] R. Krebs; S. Deubert; J.P. Reithmaier; A. Forchel Improved performance of MBE grown quantum-dot lasers with asymmetric dots in a well design emitting near 1.3 μm, J. Crystal Growth, Volume 251 (2003), pp. 742-747

[37] R.H. Wang; A. Stintz; P.M. Varangis; T.C. Newell; H. Li; K.J. Malloy; L.F. Lester Room-temperature operation of InAs quantum-dash lasers on InP (001), IEEE Photon. Technol. Lett., Volume 13 (2001), pp. 767-769

[38] R. Schwertberger; D. Gold; J.P. Reithmaier; A. Forchel Epitaxial growth of 1.55 μm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications, J. Crystal Growth, Volume 251 (2003), pp. 248-252

[39] A. Bilenca; R. Alizon; V. Mikhelashvili; G. Eisenstein; R. Schwertberger; D. Gold; J.P. Reithmaier; A. Forchel InAs/InP 1550 nm quantum dash semiconductor optical amplifiers, Electron. Lett., Volume 38 (2002) no. 22, pp. 1350-1351

Cité par Sources :

Commentaires - Politique