[Phonons dans les phases dopées aux alcalins des nanotubes de carbone monofeuillets]
Dans cet article nous faisons une revue des résultats de spectroscopie Raman obtenus sur les phases dopées des faisceaux de nanotubes de carbone monofeuillets. Nous mettons en relation les évolutions des spectres Raman sous l'effet du dopage avec celles de la résistivité et de l'absorption optique mesurées sur les mêmes échantillons. Nous nous focalisons sur les changements du profil des modes tangentiels induits par le dopage. Dans un premier temps, un durcissement de ces modes, concomitant avec la disparition progressive des bandes d'absorption optique et la chute de la résistivité, est clairement établi. La réponse Raman associée à un premier plateau de résistivité se caractérise par un mode unique symétrique déplacé vers les hautes fréquences par rapport à sa position de départ. Cette réponse est considérée comme la signature Raman d'une phase dopée spécifique nommée phase I. À l'opposé, la réponse Raman de la phase dopée à saturation (second plateau de résistivité) se caractérise par une forme de raie de type Breit–Wigner–Fano déplacée vers les basses fréquences par rapport à la fréquence du mode tangentiel dominant des nanotubes non dopés.
We review Raman spectroscopy of alkali-doped single-wall carbon nanotube bundles. These results are correlated to resistivity and optical absorption measurements performed on the same samples. In this review we focus on the behavior of the high-frequency tangential modes upon doping. A doping-induced upshift of the tangential modes, concomitant to a loss of absorption bands in the optical spectra and to a monotonic decrease of the resistivity, is stated. The Raman response measured on the first plateau of the resistivity curve is featured by a symmetric single component upshifted with respect to pristine sample. This response is assigned to the Raman signature of a specific doped phase, labelled phase I. By contrast the Raman response of the saturated phase, associated to a second plateau in the resistance curve, is featured by a Breit–Wigner–Fano component downshifted with respect to the pristine sample.
Mots-clés : Nanotubes de carbone monofeuillets, spectroscopie Raman
Jean-Louis Sauvajol 1 ; N. Bendiab 1 ; Eric Anglaret 1 ; Pierre Petit 2
@article{CRPHYS_2003__4_9_1035_0, author = {Jean-Louis Sauvajol and N. Bendiab and Eric Anglaret and Pierre Petit}, title = {Phonons in alkali-doped single-wall carbon nanotube bundles}, journal = {Comptes Rendus. Physique}, pages = {1035--1045}, publisher = {Elsevier}, volume = {4}, number = {9}, year = {2003}, doi = {10.1016/S1631-0705(03)00099-9}, language = {en}, }
TY - JOUR AU - Jean-Louis Sauvajol AU - N. Bendiab AU - Eric Anglaret AU - Pierre Petit TI - Phonons in alkali-doped single-wall carbon nanotube bundles JO - Comptes Rendus. Physique PY - 2003 SP - 1035 EP - 1045 VL - 4 IS - 9 PB - Elsevier DO - 10.1016/S1631-0705(03)00099-9 LA - en ID - CRPHYS_2003__4_9_1035_0 ER -
Jean-Louis Sauvajol; N. Bendiab; Eric Anglaret; Pierre Petit. Phonons in alkali-doped single-wall carbon nanotube bundles. Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1035-1045. doi : 10.1016/S1631-0705(03)00099-9. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00099-9/
[1] The Physics of Fullerene Based and Fullerene-Related Materials (W. Andreoni, ed.), Kluwer Academic, Dordrecht, 2000
[2] Science, 273 (1996), p. 483
[3] Nature, 388 (1997), p. 255
[4] Nature, 388 (1997), p. 257
[5] Appl. Phys. A, 67 (1998), p. 47
[6] Phys. Rev. B, 58 (1998), p. R4195
[7] Chem. Phys. Lett., 305 (1999), p. 370
[8] Phys. Rev. B, 60 (1999), p. 13339
[9] Electrochim. Acta, 45 (1999), p. 107
[10] Phys. Rev. B, 62 (2000), p. R4845
[11] Phys. Rev. B, 62 (2000), p. 4845
[12] Chem. Phys. Lett., 318 (2000), p. 561
[13] Phys. Rev. B, 61 (2000), p. 4526
[14] Phys. Rev. B, 61 (2000), p. R10606
[15] Phys. Rev. B, 63 (2001), p. 153407
[16] Phys. Rev. Lett., 80 (1998), p. 5556
[17] Mol. Cryst. Liq. Cryst., 34 (2000), p. 769
[18] Adv. in Phys., 49 (2000), p. 705 (and references therein)
[19] Carbon, 40 (2001), p. 1697
[20] Eur. Phys. J. B, 18 (2000), p. 201 (and references therein)
[21] Phys. Rev. B, 64 (2001), p. 205403
[22] Synth. Metals, 103 (1999), p. 2555
[23] Phys. Rev. B, 58 (1998), p. R16016
[24] Chem. Phys. Lett., 316 (2000), p. 186
[25] Phys. Rev. B, 63 (2001), p. 155414
[26] Phys. Rev. B, 65 (2002), p. 33402
[27] Adv. Mater., 6 (1994), p. 731
[28] Phys. Rev. B, 16 (1977), p. 3330
[29] Adv. in Phys., 30 (1981), p. 139
[30] Chem. Phys. Lett., 333 (2001), p. 16
[31] Nature, 388 (1997), p. 756
[32] N. Bendiab, R. Almairac, S. Rols, J.-L. Sauvajol, P. Petit, in press
[33] Chem. Phys. Lett., 339 (2000), p. 305
[34] Phys. Rev. B, 48 (1993), p. 8142
[35] Phys. Rev. B, 66 (2002), p. 195406
[36] Synth. Met., 121 (2001), p. 1203
[37] Phys. Rev. B, 64 (2001), p. 245424
[38] R. Almairac, in press
[39] Phys. Rev. B, 65 (2002), p. 35420
- From metallic to semiconductor conversion of single-walled carbon nanotubes by chlorination, Chemical Physics Letters, Volume 781 (2021), p. 138988 | DOI:10.1016/j.cplett.2021.138988
- Theoretical study of electronic and vibrational properties of dimer of single-wall carbon nanotubes, International Journal of Hydrogen Energy, Volume 41 (2016) no. 45, p. 20874 | DOI:10.1016/j.ijhydene.2016.06.125
- Doping of C70 fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroelectrochemical studies, Nanotechnology, Volume 25 (2014) no. 48, p. 485706 | DOI:10.1088/0957-4484/25/48/485706
- Raman spectroscopy of graphite intercalation compounds: Charge transfer, strain, and electron–phonon coupling in graphene layers, physica status solidi (b), Volume 251 (2014) no. 12, p. 2337 | DOI:10.1002/pssb.201451477
- Doped Carbon Nanotubes: (X:CNTs), Carbon Meta‐Nanotubes (2011), p. 41 | DOI:10.1002/9781119954743.ch2
- 1H NMR study of the solvent THF concerning their structural and dynamical properties in chemically Li-intercalated SWNT, Chemical Physics Letters, Volume 513 (2011) no. 4-6, p. 246 | DOI:10.1016/j.cplett.2011.08.004
- The influence of doping on the Raman intensity of the D band in single walled carbon nanotubes, Carbon, Volume 48 (2010) no. 3, p. 832 | DOI:10.1016/j.carbon.2009.10.036
- Raman spectroscopy of strained single-walled carbon nanotubes, Chemical Communications (2009) no. 45, p. 6902 | DOI:10.1039/b914588e
- Effect of Electrochemical Treatment in a Lithium Chloride Solution on Field Emission from Carbon Nanotubes, Chinese Physics Letters, Volume 26 (2009) no. 8, p. 086112 | DOI:10.1088/0256-307x/26/8/086112
- Selective Etching of Thin Single-Walled Carbon Nanotubes, Journal of the American Chemical Society, Volume 131 (2009) no. 12, p. 4529 | DOI:10.1021/ja807578n
- The formation and properties of one-dimensional FeHal2 (Hal = Cl, Br, I) nanocrystals in channels of single-walled carbon nanotubes, Nanotechnologies in Russia, Volume 4 (2009) no. 9-10, p. 634 | DOI:10.1134/s1995078009090080
- Direct Revealing of the Occupation Sites of Heavy Alkali Metal Atoms in Single-Walled Carbon Nanotube Intercalation Compounds, The Journal of Physical Chemistry C, Volume 113 (2009) no. 18, p. 7624 | DOI:10.1021/jp900546n
- Raman spectroscopy study on concentrated acid treated carbon nanotubes, physica status solidi (b), Volume 246 (2009) no. 11-12, p. 2717 | DOI:10.1002/pssb.200982297
- Doping of C60 Fullerene Peapods with Lithium Vapor: Raman Spectroscopic and Spectroelectrochemical Studies, Chemistry – A European Journal, Volume 14 (2008) no. 20, p. 6231 | DOI:10.1002/chem.200701863
- Carbon Nanostructures as a New High-Performance Platform for MR Molecular Imaging, Bio-Applications of Nanoparticles, Volume 620 (2007), p. 74 | DOI:10.1007/978-0-387-76713-0_6
- Kohn anomalies and nonadiabaticity in doped carbon nanotubes, Physical Review B, Volume 75 (2007) no. 11 | DOI:10.1103/physrevb.75.115423
- Metallic properties of Li-intercalated carbon nanotubes investigated by NMR, Physical Review B, Volume 74 (2006) no. 7 | DOI:10.1103/physrevb.74.073416
- Spectroscopies on Carbon Nanotubes, Understanding Carbon Nanotubes, Volume 677 (2006), p. 277 | DOI:10.1007/3-540-37586-4_5
- Raman studies of suspensions and solutions of singlewall carbon nanotubes, MRS Proceedings, Volume 858 (2004) | DOI:10.1557/proc-858-hh11.1
Cité par 19 documents. Sources : Crossref
Commentaires - Politique