[Les propriétés thermiques des nanotubes de carbone]
Nous présentons des propriétés thermiques telles que le transport thermique, la chaleur spécifique en relation avec les constantes élastiques, ou l'absorption d'He, en comparant les prédictions théoriques obtenues en général pour les nanotubes (NT) individuels, avec quelques résultats expérimentaux typiques obtenus en général non sur des NT individuels, mais sous forme d'arrangements de NT multi-parois, ou de faisceaux de NT mono-parois.
Thermal properties, such as thermal transport, heat capacity and its relation to elastic constants, and He adsorption, are presented by comparing theoretical predictions, in general for individual C-nanotubes (NT), to some typical experimental results commonly obtained not on individual NTs, but on larger collective arrangements, such as multiwalled NT or singlewalled NT ropes.
@article{CRPHYS_2003__4_9_1047_0, author = {Jean-Claude Lasjaunias}, title = {Thermal properties of carbon nanotubes}, journal = {Comptes Rendus. Physique}, pages = {1047--1054}, publisher = {Elsevier}, volume = {4}, number = {9}, year = {2003}, doi = {10.1016/S1631-0705(03)00112-9}, language = {en}, }
Jean-Claude Lasjaunias. Thermal properties of carbon nanotubes. Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1047-1054. doi : 10.1016/S1631-0705(03)00112-9. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00112-9/
[1] Phys. Rev. B, 59 (1999), p. R2514
[2] Phys. Rev. Lett., 84 (2000), p. 4613
[3] Phys. Rev. B, 59 (1999), p. R9015
[4] J. Appl. Phys., 93 (2003), p. 2157
[5] Physica B, 87 (2001), p. 215502
[6] Nature, 404 (2000), p. 974
[7] Science, 289 (2000), p. 1730
[8] J. Chem. Phys., 26 (1957), p. 486
[9] Phys. Rev. Lett., 85 (2000), p. 5222
[10] Carbon, 40 (2002), p. 1697
[11] et al. Science, 273 (1996), p. 483
[12] et al. Nature, 388 (1997), p. 756
[13] Phys. Rev. B, 65 (2002), p. 113409
[14] Phys. Rev. B, 60 (1999), p. 3264
[15] Phys. Rev. B, 57 (1998), p. 4145
[16] Phys. Rev. Lett., 82 (1999), p. 944
[17] et al. Nanotechnology, 14 (2003) (in press)
[18] Phys. Rev. B, 58 (1998), p. 14013
[19] Mat. Sci. Engin. C, 16 (2001), p. 3
[20] et al. Mat. Res. Soc. Symp. Proc., 633 (2001) (A12-1)
[21] Experimental properties of He3 adsorbed on graphite (W.P. Halperin, ed.), Progress in Low-Temperature Physics, 14, Elsevier, 1995
[22] Phys. Rev. B, 67 (1991), p. 3535
[23] Phys. Rev. A, 8 (1973), p. 1589
[24] Phys. Rev. A, 9 (1974), p. 2657
[25] Phys. Rev. B, 62 (2000), p. 2173
[26] Rev. Modern Phys., 73 (2001), p. 857
[27] Low Temperature Physics-23, Proc. of LT 23 Conf., August 2002, Physica B, 329–333 (2003), p. 278
[28] Phys. Rev. Lett., 82 (1999), p. 5305 (Erratum Phys. Rev. Lett., 84, 2000, pp. 1844)
[29] J. Low Temp. Phys., 126 (2002), p. 223
[30] Phys. Rev. Lett., 91 (2003), p. 025901
- Thermal Performance Analysis of Carbon Materials Based TSV in Three Dimensional Integrated Circuits, IEEE Access, Volume 11 (2023), p. 75285 | DOI:10.1109/access.2023.3297222
- Preparation and Thermophysical Properties of High Thermal Conductive Solar Salt/MWCNTs Composite Materials, ChemistrySelect, Volume 4 (2019) no. 15, p. 4521 | DOI:10.1002/slct.201900249
- Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films, Journal of Electronic Materials, Volume 47 (2018) no. 12, p. 7069 | DOI:10.1007/s11664-018-6634-6
- Effect of the Polyketone Aromatic Pendent Groups on the Electrical Conductivity of the Derived MWCNTs-Based Nanocomposites, Polymers, Volume 10 (2018) no. 6, p. 618 | DOI:10.3390/polym10060618
- Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP, RSC Advances, Volume 8 (2018) no. 34, p. 19251 | DOI:10.1039/c8ra03019g
- Photoflash thermal diffusivity measurement of carbon nanotube-filled PVDF composite at low temperature, Nondestructive Testing and Evaluation, Volume 28 (2013) no. 3, p. 226 | DOI:10.1080/10589759.2012.740043
- Multi-Walled Carbon Nanotubes, Springer Handbook of Nanomaterials (2013), p. 147 | DOI:10.1007/978-3-642-20595-8_5
- Alignments of Carbon Nanotubes in Polymer Matrix: A Raman Perspective, International Journal of Polymer Analysis and Characterization, Volume 17 (2012) no. 7, p. 534 | DOI:10.1080/1023666x.2012.704559
- Unravelling low lying phonons and vibrations of carbon nanostructures: The contribution of inelastic and quasi-elastic neutron scattering, The European Physical Journal Special Topics, Volume 213 (2012) no. 1, p. 77 | DOI:10.1140/epjst/e2012-01665-4
- , JDN 16 – Diffusion Inélastique des Neutrons pour l'Etude des Excitations dans la Matiére Condensée (2010), p. 507 | DOI:10.1051/sfn/2010011
- Growth of carbon nanofibers and related structures by combined method of plasma enhanced chemical vapor deposition and aerosol synthesis, Vacuum, Volume 82 (2008) no. 8, p. 805 | DOI:10.1016/j.vacuum.2007.11.009
- Meshless method for nonlinear heat conduction analysis of nano-composites, Heat and Mass Transfer, Volume 43 (2007) no. 10, p. 1097 | DOI:10.1007/s00231-006-0194-7
- Nonlinear Thermal Analysis of Carbon Nanotube Composites by Element Free Galerkin Method, Numerical Heat Transfer, Part A: Applications, Volume 51 (2007) no. 11, p. 1087 | DOI:10.1080/10407780601112852
- Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations, Physical Review B, Volume 76 (2007) no. 13 | DOI:10.1103/physrevb.76.134110
- Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation, Applied Physics Letters, Volume 89 (2006) no. 8 | DOI:10.1063/1.2336622
Cité par 15 documents. Sources : Crossref
Commentaires - Politique