Comptes Rendus
Thermal properties of carbon nanotubes
[Les propriétés thermiques des nanotubes de carbone]
Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1047-1054.

Nous présentons des propriétés thermiques telles que le transport thermique, la chaleur spécifique en relation avec les constantes élastiques, ou l'absorption d'He, en comparant les prédictions théoriques obtenues en général pour les nanotubes (NT) individuels, avec quelques résultats expérimentaux typiques obtenus en général non sur des NT individuels, mais sous forme d'arrangements de NT multi-parois, ou de faisceaux de NT mono-parois.

Thermal properties, such as thermal transport, heat capacity and its relation to elastic constants, and He adsorption, are presented by comparing theoretical predictions, in general for individual C-nanotubes (NT), to some typical experimental results commonly obtained not on individual NTs, but on larger collective arrangements, such as multiwalled NT or singlewalled NT ropes.

Publié le :
DOI : 10.1016/S1631-0705(03)00112-9

Jean-Claude Lasjaunias 1

1 Centre de recherches sur les très basses températures, CNRS, laboratoire associé à l'Université Joseph Fourier, BP 166, 38042 Grenoble cedex 9, France
@article{CRPHYS_2003__4_9_1047_0,
     author = {Jean-Claude Lasjaunias},
     title = {Thermal properties of carbon nanotubes},
     journal = {Comptes Rendus. Physique},
     pages = {1047--1054},
     publisher = {Elsevier},
     volume = {4},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00112-9},
     language = {en},
}
TY  - JOUR
AU  - Jean-Claude Lasjaunias
TI  - Thermal properties of carbon nanotubes
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 1047
EP  - 1054
VL  - 4
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00112-9
LA  - en
ID  - CRPHYS_2003__4_9_1047_0
ER  - 
%0 Journal Article
%A Jean-Claude Lasjaunias
%T Thermal properties of carbon nanotubes
%J Comptes Rendus. Physique
%D 2003
%P 1047-1054
%V 4
%N 9
%I Elsevier
%R 10.1016/S1631-0705(03)00112-9
%G en
%F CRPHYS_2003__4_9_1047_0
Jean-Claude Lasjaunias. Thermal properties of carbon nanotubes. Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1047-1054. doi : 10.1016/S1631-0705(03)00112-9. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00112-9/

[1] J. Hone; M. Whitney; C. Piskotti; A. Zettl Phys. Rev. B, 59 (1999), p. R2514

[2] S. Berber; Y.K. Kwon; D. Tomanek Phys. Rev. Lett., 84 (2000), p. 4613

[3] W. Yi; L. Lu; Z. Dian-Lin; Z.W. Pan; S.S. Xie Phys. Rev. B, 59 (1999), p. R9015

[4] J.E. Fischer; W. Zhou; J. Vavro; M.C. Llaguno; C. Guthy; R. Haggenmueller; M.J. Casavant; D.E. Walters; R.E. Smalley J. Appl. Phys., 93 (2003), p. 2157

[5] P. Kim; Li Shi; A. Majumdar; P.L. McEuen; P. Kim; Li Shi; A. Majumdar; P.L. McEuen Physica B, 87 (2001), p. 215502

[6] K. Schwab; E.A. Henriksen; J.M. Worlock; M.L. Roukes Nature, 404 (2000), p. 974

[7] J. Hone; B. Batlogg; Z. Benes; A.T. Johnson; J.E. Fischer Science, 289 (2000), p. 1730

[8] S.M. Genensky; G.F. Newell J. Chem. Phys., 26 (1957), p. 486

[9] S. Rols; Z. Benes; E. Anglaret; J.L. Sauvajol; P. Papanek; J.E. Fischer; G. Coddens; H. Schober; A.J. Dianoux Phys. Rev. Lett., 85 (2000), p. 5222

[10] J.L. Sauvajol; E. Anglaret; S. Rols; L. Alvarez Carbon, 40 (2002), p. 1697

[11] A. Thess et al. Science, 273 (1996), p. 483

[12] C. Journet et al. Nature, 388 (1997), p. 756

[13] J.C. Lasjaunias; K. Biljakovic; Z. Benes; J.E. Fischer; P. Monceau Phys. Rev. B, 65 (2002), p. 113409

[14] A. Mizel; L.X. Benedict; M.L. Cohen; S.G. Louie; A. Zettl; N.K. Budraa; W.P. Byermann Phys. Rev. B, 60 (1999), p. 3264

[15] R. Saito; T. Takeya; T. Kimura; G. Dresselhaus; M.S. Dresselhaus Phys. Rev. B, 57 (1998), p. 4145

[16] J.P. Salvetat; G.A.D. Briggs; J.M. Bonard; R.R. Bacsa; A.J. Kulik; T. Stockli; N.A. Burnham; L. Forro Phys. Rev. Lett., 82 (1999), p. 944

[17] J.C. Lasjaunias; K. Bijakovic; P. Monceau; J.L. Sauvajol et al. Nanotechnology, 14 (2003) (in press)

[18] A. Krishnan; E. Dujardin; T.W. Ebbesen; P.N. Yianilos; M.M.J. Treacy Phys. Rev. B, 58 (1998), p. 14013

[19] Z.L. Wang; R.P. Gao; P. Poncharal; W.A. de Heer; Z.R. Dai; Z.W. Pan Mat. Sci. Engin. C, 16 (2001), p. 3

[20] B. Vigolo et al. Mat. Res. Soc. Symp. Proc., 633 (2001) (A12-1)

[21] H. Godfrin; H.J. Lauter Experimental properties of He3 adsorbed on graphite (W.P. Halperin, ed.), Progress in Low-Temperature Physics, 14, Elsevier, 1995

[22] D.S. Greywall; P.A. Busch; D.S. Greywall Phys. Rev. B, 67 (1991), p. 3535

[23] M. Bretz; J.G. Dash; D.C. Hickernell; E.O. McLean; O.E. Vilches Phys. Rev. A, 8 (1973), p. 1589

[24] R.L. Elgin; D.L. Goodstein Phys. Rev. A, 9 (1974), p. 2657

[25] G. Stan; M.J. Bojan; S. Curtarolo; S.M. Gatica; M.W. Cole Phys. Rev. B, 62 (2000), p. 2173

[26] M. Calbi; M.W. Cole; S.M. Gatica; M.J. Bojan; G. Stan Rev. Modern Phys., 73 (2001), p. 857

[27] T. Wilson; O.E. Vilches Low Temperature Physics-23, Proc. of LT 23 Conf., August 2002, Physica B, 329–333 (2003), p. 278

[28] W. Teizer; R.B. Hallock; E. Dujardin; T.W. Ebbessen; W. Teizer; R.B. Hallock; E. Dujardin; T.W. Ebbessen Phys. Rev. Lett., 82 (1999), p. 5305 (Erratum Phys. Rev. Lett., 84, 2000, pp. 1844)

[29] Y.H. Kahng; R.B. Hallock; E. Dujardin; T.W. Ebbessen J. Low Temp. Phys., 126 (2002), p. 223

[30] J.C. Lasjaunias; K. Biljakovic; J.L. Sauvajol; P. Monceau Phys. Rev. Lett., 91 (2003), p. 025901

  • Peng Xu; Huan Huang; Bing-Qi Zhang; Zheng-Hua Tang Thermal Performance Analysis of Carbon Materials Based TSV in Three Dimensional Integrated Circuits, IEEE Access, Volume 11 (2023), p. 75285 | DOI:10.1109/access.2023.3297222
  • Yanze Wu; Jinli Li; Min Wang; Huaiyou Wang; Youjing Zhao Preparation and Thermophysical Properties of High Thermal Conductive Solar Salt/MWCNTs Composite Materials, ChemistrySelect, Volume 4 (2019) no. 15, p. 4521 | DOI:10.1002/slct.201900249
  • Saman Mahmoodi; Mehrdad Moradi Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films, Journal of Electronic Materials, Volume 47 (2018) no. 12, p. 7069 | DOI:10.1007/s11664-018-6634-6
  • Nicola Migliore; Lorenzo Massimo Polgar; Rodrigo Araya-Hermosilla; Francesco Picchioni; Patrizio Raffa; Andrea Pucci Effect of the Polyketone Aromatic Pendent Groups on the Electrical Conductivity of the Derived MWCNTs-Based Nanocomposites, Polymers, Volume 10 (2018) no. 6, p. 618 | DOI:10.3390/polym10060618
  • Yanze Wu; Jinli Li; Min Wang; Huaiyou Wang; Yuan Zhong; Youjing Zhao; Ming Wei; Yan Li Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP, RSC Advances, Volume 8 (2018) no. 34, p. 19251 | DOI:10.1039/c8ra03019g
  • M.M. Moksin; M. Haydari; M.S. Husin; N. Yahya; B.Z. Azmi Photoflash thermal diffusivity measurement of carbon nanotube-filled PVDF composite at low temperature, Nondestructive Testing and Evaluation, Volume 28 (2013) no. 3, p. 226 | DOI:10.1080/10589759.2012.740043
  • Ákos Kukovecz; Gábor Kozma; Zoltán Kónya Multi-Walled Carbon Nanotubes, Springer Handbook of Nanomaterials (2013), p. 147 | DOI:10.1007/978-3-642-20595-8_5
  • Sunil Bhardwaj; Cinzia Cepek; Mauro Giorcelli; Alberto Tagliaferro Alignments of Carbon Nanotubes in Polymer Matrix: A Raman Perspective, International Journal of Polymer Analysis and Characterization, Volume 17 (2012) no. 7, p. 534 | DOI:10.1080/1023666x.2012.704559
  • S. Rols; C. Bousige; J. Cambedouzou; P. Launois; J.-L. Sauvajol; H. Schober; V.N. Agafonov; V.A. Davydov; J. Ollivier Unravelling low lying phonons and vibrations of carbon nanostructures: The contribution of inelastic and quasi-elastic neutron scattering, The European Physical Journal Special Topics, Volume 213 (2012) no. 1, p. 77 | DOI:10.1140/epjst/e2012-01665-4
  • J. Cambedouzou; S. Rols, JDN 16 – Diffusion Inélastique des Neutrons pour l'Etude des Excitations dans la Matiére Condensée (2010), p. 507 | DOI:10.1051/sfn/2010011
  • Michal Guláš; Mária Čaplovičová; Miroslav Michalka; François Le Normand; Marius Rayar; Peter Macko; Pavel Veis Growth of carbon nanofibers and related structures by combined method of plasma enhanced chemical vapor deposition and aerosol synthesis, Vacuum, Volume 82 (2008) no. 8, p. 805 | DOI:10.1016/j.vacuum.2007.11.009
  • Indra Vir Singh; Masataka Tanaka; Morinobu Endo Meshless method for nonlinear heat conduction analysis of nano-composites, Heat and Mass Transfer, Volume 43 (2007) no. 10, p. 1097 | DOI:10.1007/s00231-006-0194-7
  • I. V. Singh; Masa. Tanaka; M. Endo Nonlinear Thermal Analysis of Carbon Nanotube Composites by Element Free Galerkin Method, Numerical Heat Transfer, Part A: Applications, Volume 51 (2007) no. 11, p. 1087 | DOI:10.1080/10407780601112852
  • Yunfeng Gu; Yunfei Chen Thermal conductivities of single-walled carbon nanotubes calculated from the complete phonon dispersion relations, Physical Review B, Volume 76 (2007) no. 13 | DOI:10.1103/physrevb.76.134110
  • Chen-Li Zhang; Hui-Shen Shen Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation, Applied Physics Letters, Volume 89 (2006) no. 8 | DOI:10.1063/1.2336622

Cité par 15 documents. Sources : Crossref

Commentaires - Politique