Comptes Rendus
Hydrogen storage in carbon nanotubes
[Stockage d'hydrogène dans les nanotubes de carbone]
Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1055-1062.

Le stockage d'hydrogène dans les nouvelles nano-structures de carbone est un sujet vivement débattu. Les mesures de la capacité de stockage de ces matériaux effectuées dans les dix dernières années s'échelonnent sur une gamme très large, de 0,1 % jusqu'à 67 % en poids. Cet article présente l'état de l'art en ce qui concerne le stockage d'hydrogène dans les nano-structures de carbone. Nous discutons de façon critique les récentes « publications clés » se rapportant à ce sujet qui annoncent des capacités de stockage largement supérieures aux références imposées par le Département de l'Energie américain et présentons les derniers résultats obtenus dans le cadre d'un projet commun sponsorisé par le Ministère Fédéral de l'Education et de la Recherche allemand.

Hydrogen storage in new nano-structured carbonic materials is a topic for lively discussion. The measured storage capacities of these materials, which have been announced in the literature during the last ten years are spread over an enormous range from about 0.1 wt% up to 67 wt%. This paper will give a report on the state of the art of hydrogen storage in carbon nano-structures. We shall critically review the recent ‘key publications’ on this topic, which claim storage capacities clearly above the technological bench mark set by the US Department of Energy, and we shall report new results which have been obtained in a joint project sponsored by the Federal Ministry for Education and Research in Germany (BMBF).

Publié le :
DOI : 10.1016/S1631-0705(03)00107-5
Keywords: Hydrogen storage, Carbon nanotubes, Nanostructured graphite
Mots-clés : Stockage d'hydrogène, Nanotubes de carbone, Graphite nanostructuré

M. Becher 1 ; M. Haluska 1 ; M. Hirscher 1 ; A. Quintel 2 ; V. Skakalova 2 ; U. Dettlaff-Weglikovska 2 ; X. Chen 2 ; M. Hulman 2 ; Y. Choi 2 ; S. Roth 2 ; V. Meregalli 2 ; M. Parrinello 2 ; R. Ströbel 3 ; L. Jörissen 3 ; M.M. Kappes 4 ; J. Fink 5 ; A. Züttel 6 ; I. Stepanek 7 ; P. Bernier 7

1 Max-Planck-Institut für Metallforschung, Heisenbergstr. 3, 70569 Stuttgart, Germany
2 Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany
3 ZSW Ulm, Helmholtzstr. 8, 89081 Ulm, Germany
4 Universität Karlsruhe, Institut für physikalische Chemie, Kaiserstr. 12, 76128 Karlsruhe, Germany
5 Institut für Festkörper- und Werkstoffforschung, 01171 Dresden, Germany
6 Universite Fribourg, Physique Departement, Perolles, CH-1700 Fribourg, Switzerland
7 GDPC, Universite Montpellier II, 34095 Montpellier cedex 05, France
@article{CRPHYS_2003__4_9_1055_0,
     author = {M. Becher and M. Haluska and M. Hirscher and A. Quintel and V. Skakalova and U. Dettlaff-Weglikovska and X. Chen and M. Hulman and Y. Choi and S. Roth and V. Meregalli and M. Parrinello and R. Str\"obel and L. J\"orissen and M.M. Kappes and J. Fink and A. Z\"uttel and I. Stepanek and P. Bernier},
     title = {Hydrogen storage in carbon nanotubes},
     journal = {Comptes Rendus. Physique},
     pages = {1055--1062},
     publisher = {Elsevier},
     volume = {4},
     number = {9},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00107-5},
     language = {en},
}
TY  - JOUR
AU  - M. Becher
AU  - M. Haluska
AU  - M. Hirscher
AU  - A. Quintel
AU  - V. Skakalova
AU  - U. Dettlaff-Weglikovska
AU  - X. Chen
AU  - M. Hulman
AU  - Y. Choi
AU  - S. Roth
AU  - V. Meregalli
AU  - M. Parrinello
AU  - R. Ströbel
AU  - L. Jörissen
AU  - M.M. Kappes
AU  - J. Fink
AU  - A. Züttel
AU  - I. Stepanek
AU  - P. Bernier
TI  - Hydrogen storage in carbon nanotubes
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 1055
EP  - 1062
VL  - 4
IS  - 9
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00107-5
LA  - en
ID  - CRPHYS_2003__4_9_1055_0
ER  - 
%0 Journal Article
%A M. Becher
%A M. Haluska
%A M. Hirscher
%A A. Quintel
%A V. Skakalova
%A U. Dettlaff-Weglikovska
%A X. Chen
%A M. Hulman
%A Y. Choi
%A S. Roth
%A V. Meregalli
%A M. Parrinello
%A R. Ströbel
%A L. Jörissen
%A M.M. Kappes
%A J. Fink
%A A. Züttel
%A I. Stepanek
%A P. Bernier
%T Hydrogen storage in carbon nanotubes
%J Comptes Rendus. Physique
%D 2003
%P 1055-1062
%V 4
%N 9
%I Elsevier
%R 10.1016/S1631-0705(03)00107-5
%G en
%F CRPHYS_2003__4_9_1055_0
M. Becher; M. Haluska; M. Hirscher; A. Quintel; V. Skakalova; U. Dettlaff-Weglikovska; X. Chen; M. Hulman; Y. Choi; S. Roth; V. Meregalli; M. Parrinello; R. Ströbel; L. Jörissen; M.M. Kappes; J. Fink; A. Züttel; I. Stepanek; P. Bernier. Hydrogen storage in carbon nanotubes. Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1055-1062. doi : 10.1016/S1631-0705(03)00107-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00107-5/

[1] V. Meregalli; M. Parrinello Appl. Phys. A, 72 (2001), p. 143

[2] Q. Wang; J.K. Johnson J. Chem. Phys., 110 (1998) no. 1, p. 577

[3] Q. Wang; J.K. Johnson J. Phys. Chem. B, 103 (1999) no. 2, p. 277

[4] Q. Wang; J.K. Johnson J. Phys. Chem. B, 103 (1999) no. 23, p. 4809

[5] M. Rzepka; P. Lamp; M.A. de la Casa J. Phys. Chem. B, 102 (1998), p. 10894

[6] F. Darkrim; J. Vermesse; P. Malbrunot; D. Levesque J. Chem. Phys., 110 (1999) no. 8, p. 4020

[7] F. Darkrim; D. Levesque J. Phys. Chem. B, 104 (1999) no. 29, p. 6773

[8] Y.F. Yin; T. Mays; B. McEnaney Langmuir, 16 (2000), p. 10521

[9] K.A. Williams; P.C. Eklund Chem. Phys. Lett., 320 (2000), p. 352

[10] S.M. Lee; Y.H. Lee Appl. Phys. Lett., 76 (2000) no. 20, p. 2877

[11] S.M. Lee; K.S. Park; Y.C. Choi; Y.S. Park; J.M. Bok; D.J. Bae; K.S. Nahm; Y.G. Choi; S.C. Yu; N. Kim; T. Frauenheim; Y.H. Lee Synthetic Metals, 113 (2000), p. 209

[12] S.M. Lee; L.H. An; W.S. Kim; Y.H. Lee; Y.S. Park; G. Seifert; T. Frauenheim Synthetic Metals, 121 (2001), p. 1189

[13] S.M. Lee; K.H. An; Y.H. Lee; G. Seifert; T. Frauenheim J. Am. Chem. Soc., 123 (2001) no. 21, p. 5059

[14] Y. Ma; Y. Xia; M. Zhao; R. Wang; L. Mei Phys. Rev. B, 63 (2001), p. 115422

[15] K. Tada; S. Furuya; K. Watanabe Phys. Rev. B, 63 (2001), p. 155405

[16] C.W. Baulischer Chem. Phys. Lett., 322 (2000), p. 237

[17] C.W. Baulischer Nano Lett., 1 (2001) no. 5, p. 223

[18] H. Cheng; G. Pez; A.C. Cooper J. Am. Chem. Soc., 123 (2001), p. 5845

[19] A. Chambers; C. Park; R. Baker; N.M. Rodriguez J. Phys. Chem. B, 102 (1998), p. 4253

[20] C. Park; P.E. Anderson; A. Chambers; C.D. Tan; R. Hidalgo; N.M. Rodriguez J. Phys. Chem., 103 (1999), p. 10572

[21] C.C. Ahn; Y. Ye; B.V. Ratnakumar; C. Witham; R.C. Bowman; B. Fultz Appl. Phys. Lett., 73 (1998) no. 23, p. 3378

[22] Y.Y. Fan; B. Liao; M. Liu; Y.L. Wie; M.Q. Lu; H.M. Cheng Carbon, 37 (1999), p. 1649

[23] H.M. Cheng; C. Liu; Y.Y. Fan; F. Li; G. Su; L.L. He; M. Liu Z. Metallkunde, 91 (2000), p. 306

[24] C. Liu; Y.Y. Fan; M. Liu; H.T. Cong; H.M. Cheng; M.S. Dresselhaus Science, 286 (1999), p. 1127

[25] B.K. Gupta; O.N. Srivastava Int. J. Hydrogen Energy, 26 (2001), p. 857

[26] G.G. Tibbetts; G.P. Meisner; C.H. Olk Carbon, 39 (2001), p. 2291

[27] Y. Ye; C.C. Ahn; C. Witham; B. Fultz; J. Liu; A.G. Rinzler; D. Colbert; K.A. Smith; R.E. Smalley Appl. Phys. Lett., 74 (1999) no. 16, p. 2307

[28] X. Chen; M. Haluska; U. Dettlaff-Wegliskowska; M. Hirscher; M. Becher; S. Roth Mat. Res. Soc. Symp. Proc., 706 (2002), p. Z9.11.1

[29] M. Ritschel; M. Uhlemann; O. Gutfleisch; A. Leonhardt; A. Graff; C. Täschner; J. Fink Appl. Phys. Lett., 80 (2002) no. 16, p. 2985

[30] M.G. Nijkamp; J. Raaymakers; A.J. van Dillen; K.P. de Jong Appl. Phys. A, 72 (2001), p. 619

[31] A. Züttel; C. Nützenadel; P. Sudan; P. Mauron; C. Emmenegger; S. Rentsch; L. Schlapbach; A. Weidenkaff; T. Kiyobayaschi J. Alloys Comp., 676 (2002), p. 320

[32] A. Züttel; P. Sudan; P. Mauron; T. Kiyobayaschi; C. Emmenegger; L. Schlapbach Int. J. Hydrogen Energy, 27 (2002), p. 203

[33] L. Schlapbach; A. Züttel Nature, 414 (2001), p. 353

[34] M.S. Dresselhaus; G. Dresselhaus Adv. Phys., 30 (1981), p. 139

[35] P. Chen; X. Wu; J. Lin; K.L. Tan Science, 285 (1999), p. 91

[36] R.T. Yang Carbon, 38 (2000), p. 623

[37] F.E. Pinkerton; B.G. Wicke; C.H. Olk; G.G. Tibbetts; G.P. Meisner; M.S. Meyer; J.F. Herbst J. Phys. Chem., 104 (2000), p. 9460

[38] M. de Forcrand Ann. Chim. Phys., 15 (1908), p. 433

[39] Handbuch der anorganischen Chemie, Verlag Chemie, Berlin, 1927 (p. 71)

[40] V. Skakalova; A. Quintel; Y.M. Choi; S. Roth; M. Becher; M. Hirscher Chem. Phys. Lett., 365 (2002), p. 333

[41] A.C. Dillon; K.M. Jones; A. Bekkedahl; C.H. Kiang; D.S. Bethune; M.J. Heben Nature, 386 (1997), p. 377

[42] A.C. Dillon, T. Gennett, K.M. Jones, J.L. Alleman, P.A. Parilla, M.J. Heben, Proceedings of the 2000 Hydrogen Program Review NREL/CP-507-28890, 2000

[43] M. Hirscher; M. Becher; M. Haluska; U. Dettlaff-Weglikowska; A. Quintel; G.S. Duesberg; Y.M. Choi; P. Downes; M. Hulman; S. Roth; I. Stepanek; P. Bernier Hydrogen storage in sonicated carbon materials, Appl. Phys. A, Volume 72 (2001) no. 2, p. 129

[44] IEA/DOE/SNL On-line database, http://hydpark.ca.sandia.gov

[45] A.C. Dillon, K.E.H. Gilbert, J.L. Alleman, T. Gennett, K.M. Jones, P.A. Parilla, M.J. Heben, Proceedings of the 2001 U.S. DOE Hydrogen Program Review NREL/CP-570-30535, 2001

[46] A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman, G.L. Hornyak, K.M. Jones, M.J. Heben, Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405

  • Hadiyawarman Hadiyawarman; Demas Aji; Gerald Ensang Timuda; Nono Darsono; Sri Rahayu; Abdul Hamid Budiman; Deni Shidqi Khaerudini Bibliometric review of carbonaceous-based sorbent for hydrogen storage, Clean Technologies and Environmental Policy, Volume 27 (2025) no. 2, p. 861 | DOI:10.1007/s10098-024-03096-3
  • Md Nahid Sarker; Ahmed Nazmus Sakib; Md Ismot Hossain Al-Mobin; Philip M. Resnick Innovative Materials and Techniques for Enhancing Hydrogen Storage: A Comprehensive Review of Damage Detection and Preventive Strategies, ASME Open Journal of Engineering, Volume 3 (2024) | DOI:10.1115/1.4065360
  • Lina M. Shaker; Ahmed A. Al-Amiery; Waleed K. Al-Azzawi Nanomaterials: paving the way for the hydrogen energy frontier, Discover Nano, Volume 19 (2024) no. 1 | DOI:10.1186/s11671-023-03949-8
  • Umedjon Khalilov; Utkir Uljayev; Kamoliddin Mehmonov; Parisa Nematollahi; Maksudbek Yusupov; Erik Neyts Can endohedral transition metals enhance hydrogen storage in carbon nanotubes?, International Journal of Hydrogen Energy, Volume 55 (2024), p. 604 | DOI:10.1016/j.ijhydene.2023.11.195
  • Niko Prasetyo; Rama Oktavian; Ahmad Sirrullah Tuning the hydrogen storage capacity of MOF‐650 by Mg2+/Ca2+ substitution and B, N co‐doped atoms: Grand canonical Monte Carlo simulation and periodic density functional theory, International Journal of Quantum Chemistry, Volume 124 (2024) no. 1 | DOI:10.1002/qua.27282
  • Hassan S. Alqahtani Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review, Sustainability, Volume 16 (2024) no. 19, p. 8659 | DOI:10.3390/su16198659
  • Panayiota Adamou; Silvio Bellomi; Sanaa Hafeez; Eleana Harkou; S.M. Al-Salem; Alberto Villa; Nikolaos Dimitratos; George Manos; Achilleas Constantinou Recent progress for hydrogen production from ammonia and hydrous hydrazine decomposition: A review on heterogeneous catalysts, Catalysis Today, Volume 423 (2023), p. 114022 | DOI:10.1016/j.cattod.2023.01.029
  • Andrea Lazzarini; Alessia Marino; Roberta Colaiezzi; Oreste De Luca; Giuseppe Conte; Alfonso Policicchio; Alfredo Aloise; Marcello Crucianelli Boronation of Biomass-Derived Materials for Hydrogen Storage, Compounds, Volume 3 (2023) no. 1, p. 244 | DOI:10.3390/compounds3010020
  • Mandana Khaksar; Layth S. Jasim; Makarim A. Mahdi; Waleed K. Abdulsahib; Mehdi Mousavi-Kamazani; Masoud Salavati-Niasari Diverse carbonous nanocomposites of Ce2Y2O7 for boosting hydrogen storage capacity; Synthesis, characterization and electrochemical studies, Journal of Energy Storage, Volume 63 (2023), p. 107032 | DOI:10.1016/j.est.2023.107032
  • Pavel O. Krasnov; Guzel S. Shkaberina; Sergey P. Polyutov Molecular hydrogen sorption capacity of P216-schwarzite: PM6-D3, MP2 and QTAIM approaches, Computational Materials Science, Volume 209 (2022), p. 111410 | DOI:10.1016/j.commatsci.2022.111410
  • Muhammad Younas; Sumeer Shafique; Ainy Hafeez; Fahad Javed; Fahad Rehman An Overview of Hydrogen Production: Current Status, Potential, and Challenges, Fuel, Volume 316 (2022), p. 123317 | DOI:10.1016/j.fuel.2022.123317
  • N S Chopra; Y Raitses; S Yatom; J M Muñoz Burgos Determination of positive anode sheath in anodic carbon arc for synthesis of nanomaterials, Journal of Physics D: Applied Physics, Volume 55 (2022) no. 11, p. 114001 | DOI:10.1088/1361-6463/ac3bf2
  • Niko Prasetyo; Fajar Inggit Pambudi Toward hydrogen storage material in fluorinated zirconium metal-organic framework (MOF-801): A periodic density functional theory (DFT) study of fluorination and adsorption, International Journal of Hydrogen Energy, Volume 46 (2021) no. 5, p. 4222 | DOI:10.1016/j.ijhydene.2020.10.222
  • Sonia Saini; S. Reshmi; Girish M. Gouda; Kuntala Bhattacharjee Emergence of carbon nanoscrolls from single walled carbon nanotubes: an oxidative route, Physical Chemistry Chemical Physics, Volume 23 (2021) no. 48, p. 27437 | DOI:10.1039/d1cp03945h
  • Anastasios Gotzias; Andreas Sapalidis Pulling Simulations and Hydrogen Sorption Modelling on Carbon Nanotube Bundles, C, Volume 6 (2020) no. 1, p. 11 | DOI:10.3390/c6010011
  • Aysu Yurduşen; Alp Yürüm; Yuda Yürüm Engineering MIL‐88B crystallites for enhanced H 2 uptake capacity: The role of ultramicropores, International Journal of Energy Research, Volume 44 (2020) no. 4, p. 2875 | DOI:10.1002/er.5104
  • Aysu Yurduşen; Alp Yürüm; Yuda Yürüm A remarkable increase in the adsorbed H2 amount: Influence of pore size distribution on the H2 adsorption capacity of Fe-BTC, International Journal of Hydrogen Energy, Volume 45 (2020) no. 22, p. 12394 | DOI:10.1016/j.ijhydene.2020.02.202
  • Michael Hirscher; Volodymyr A. Yartys; Marcello Baricco; Jose Bellosta von Colbe; Didier Blanchard; Robert C. Bowman; Darren P. Broom; Craig E. Buckley; Fei Chang; Ping Chen; Young Whan Cho; Jean-Claude Crivello; Fermin Cuevas; William I.F. David; Petra E. de Jongh; Roman V. Denys; Martin Dornheim; Michael Felderhoff; Yaroslav Filinchuk; George E. Froudakis; David M. Grant; Evan MacA. Gray; Bjørn C. Hauback; Teng He; Terry D. Humphries; Torben R. Jensen; Sangryun Kim; Yoshitsugu Kojima; Michel Latroche; Hai-Wen Li; Mykhaylo V. Lototskyy; Joshua W. Makepeace; Kasper T. Møller; Lubna Naheed; Peter Ngene; Dag Noréus; Magnus Moe Nygård; Shin-ichi Orimo; Mark Paskevicius; Luca Pasquini; Dorthe B. Ravnsbæk; M. Veronica Sofianos; Terrence J. Udovic; Tejs Vegge; Gavin S. Walker; Colin J. Webb; Claudia Weidenthaler; Claudia Zlotea Materials for hydrogen-based energy storage – past, recent progress and future outlook, Journal of Alloys and Compounds, Volume 827 (2020), p. 153548 | DOI:10.1016/j.jallcom.2019.153548
  • Khaled M. Elsabawy; Ahmed M. Fallatah Over saturated metallic-Mg-ions diffused hollow carbon nano-spheres/Pt for ultrahigh-performance hydrogen storage, Materials Letters, Volume 221 (2018), p. 139 | DOI:10.1016/j.matlet.2018.03.104
  • F. Calvo; E. Yurtsever; A. Tekin Physisorption of H2 on Fullerenes and the Solvation of C60 by Hydrogen Clusters at Finite Temperature: A Theoretical Assessment, The Journal of Physical Chemistry A, Volume 122 (2018) no. 10, p. 2792 | DOI:10.1021/acs.jpca.8b00163
  • Pavel O. Krasnov; Guzel S. Shkaberina; Alexander A. Kuzubov; Evgenia A. Kovaleva Molecular hydrogen sorption capacity of D -shwarzites, Applied Surface Science, Volume 416 (2017), p. 766 | DOI:10.1016/j.apsusc.2017.04.161
  • R. Pedicini; M. Sigalas; A. Carbone; I. Gatto Functionalised hybrid Poly(ether ether ketone) containing MnO2: Investigation of operative conditions for hydrogen sorption, International Journal of Hydrogen Energy, Volume 42 (2017) no. 15, p. 10089 | DOI:10.1016/j.ijhydene.2017.02.111
  • D.P. Broom; C.J. Webb Pitfalls in the characterisation of the hydrogen sorption properties of materials, International Journal of Hydrogen Energy, Volume 42 (2017) no. 49, p. 29320 | DOI:10.1016/j.ijhydene.2017.10.028
  • Alexey Klechikov; Jinhua Sun; Guangzhi Hu; Mingbo Zheng; Thomas Wågberg; Alexandr V. Talyzin Graphene decorated with metal nanoparticles: Hydrogen sorption and related artefacts, Microporous and Mesoporous Materials, Volume 250 (2017), p. 27 | DOI:10.1016/j.micromeso.2017.05.014
  • P. Bénard; A.-M. Beaulieu; D. Durette; R. Chahine Adsorption of hydrogen on carbon nanostructure, Compendium of Hydrogen Energy (2016), p. 147 | DOI:10.1016/b978-1-78242-362-1.00006-7
  • D. P. Broom; M. Hirscher Irreproducibility in hydrogen storage material research, Energy Environmental Science, Volume 9 (2016) no. 11, p. 3368 | DOI:10.1039/c6ee01435f
  • Abhay Kumar Choubey; Reena Chapter 6 The Hydrogen Initiative: Technological Advancements and Storage Challenges, Energy Security and Sustainability (2016), p. 135 | DOI:10.1201/9781315368047-7
  • M. Leonor Contreras; Ignacio Villarroel; Roberto Rozas Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubes, Structural Chemistry, Volume 27 (2016) no. 5, p. 1479 | DOI:10.1007/s11224-016-0767-0
  • Rosalba Juarez-Mosqueda; Andreas Mavrandonakis; Agnieszka B. Kuc; Lars G. M. Pettersson; Thomas Heine Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes, Frontiers in Chemistry, Volume 3 (2015) | DOI:10.3389/fchem.2015.00002
  • Agata Godula‐Jopek Hydrogen Storage Options Including Constraints and Challenges, Hydrogen Production (2015), p. 273 | DOI:10.1002/9783527676507.ch7
  • Alexey G. Klechikov; Guillaume Mercier; Pilar Merino; Santiago Blanco; César Merino; Alexandr V. Talyzin Hydrogen storage in bulk graphene-related materials, Microporous and Mesoporous Materials, Volume 210 (2015), p. 46 | DOI:10.1016/j.micromeso.2015.02.017
  • Rohit R Shahi; O.N. Srivastava Catalytic Application of Carbon‐based Nanostructured Materials on Hydrogen Sorption Behavior of Light Metal Hydrides, Advanced Carbon Materials and Technology (2014), p. 129 | DOI:10.1002/9781118895399.ch4
  • M. Leonor Contreras; Diego Cortés-Arriagada; Ignacio Villarroel; José Alvarez; Roberto Rozas Evaluating the hydrogen chemisorption and physisorption energies for nitrogen-containing single-walled carbon nanotubes with different chiralities: a density functional theory study, Structural Chemistry, Volume 25 (2014) no. 4, p. 1045 | DOI:10.1007/s11224-013-0377-z
  • Mohammad Shakirullah; Imtiaz Ahamd; Noor Zada; Mohammad Ishaq; Waqas Ahmad; Khalid Saeed; Imdad Ullah Mohammadzai Thermocatalytic Conversion of Coal Soot to Carbon Nanorods, Fullerenes, Nanotubes and Carbon Nanostructures, Volume 21 (2013) no. 2, p. 171 | DOI:10.1080/1536383x.2011.613537
  • Even More Applications, One‐Dimensional Metals (2013), p. 307 | DOI:10.1002/9783527690176.ch11
  • Ioana Fechete; Ye Wang; Jacques C. Védrine The past, present and future of heterogeneous catalysis, Catalysis Today, Volume 189 (2012) no. 1, p. 2 | DOI:10.1016/j.cattod.2012.04.003
  • Moises Bastos-Neto; Christin Patzschke; Marcus Lange; Jens Möllmer; Andreas Möller; Sven Fichtner; Christian Schrage; Daniel Lässig; Jörg Lincke; Reiner Staudt; Harald Krautscheid; Roger Gläser Assessment of hydrogen storage by physisorption in porous materials, Energy Environmental Science, Volume 5 (2012) no. 8, p. 8294 | DOI:10.1039/c2ee22037g
  • Novel Materials, Hydrogen Storage Technologies (2012), p. 225 | DOI:10.1002/9783527649921.ch7
  • Andrei G. Lipson; Boris F. Lyakhov; Eugenyi I. Saunin; Lyudmila N. Solodkova; Aslan Y. Tsivadze Hydrogen transport in single-walled carbon nanotubes encapsulated by palladium, International Journal of Hydrogen Energy, Volume 37 (2012) no. 7, p. 5676 | DOI:10.1016/j.ijhydene.2009.12.173
  • Charanjeet Singh; Wenhui Song Carbon nanotube structure, synthesis, and applications, The Toxicology of Carbon Nanotubes (2012), p. 1 | DOI:10.1017/cbo9780511919893.001
  • Bassem Assfour; Stefano Leoni; Gotthard Seifert; Igor A. Baburin Packings of Carbon Nanotubes – New Materials for Hydrogen Storage, Advanced Materials, Volume 23 (2011) no. 10, p. 1237 | DOI:10.1002/adma.201003669
  • Yuan Chao Liu; Bao Min Sun; Zhao Yong Ding Effect of Helium on Synthesis of Carbon Nanotubes from the V-Type Pyrolysis Flame, Advanced Materials Research, Volume 221 (2011), p. 540 | DOI:10.4028/www.scientific.net/amr.221.540
  • Xin Hu; Maohong Fan; Brian Francis Towler; Maciej Radosz; David A. Bell; Ovid Augustus Plumb Hydrogen Adsorption and Storage, Coal Gasification and Its Applications (2011), p. 157 | DOI:10.1016/b978-0-8155-2049-8.10008-7
  • Kimichi Suzuki; Megumi Kayanuma; Masanori Tachikawa; Hiroshi Ogawa; Hirotomo Nishihara; Takashi Kyotani; Umpei Nagashima Path integral molecular dynamics for hydrogen adsorption site of zeolite-templated carbon with semi-empirical PM3 potential, Computational and Theoretical Chemistry, Volume 975 (2011) no. 1-3, p. 128 | DOI:10.1016/j.comptc.2010.12.028
  • Darren P. Broom Introduction, Hydrogen Storage Materials (2011), p. 1 | DOI:10.1007/978-0-85729-221-6_1
  • Kimichi Suzuki; Megumi Kayanuma; Masanori Tachikawa; Hiroshi Ogawa; Hirotomo Nishihara; Takashi Kyotani; Umpei Nagashima Nuclear quantum effect on hydrogen adsorption site of zeolite-templated carbon model using path integral molecular dynamics, Journal of Alloys and Compounds, Volume 509 (2011), p. S868 | DOI:10.1016/j.jallcom.2010.10.066
  • Tomáš Boublík Density profiles of atoms in nano-tubes from an analytic method: hydrogen in a cylindrical pore, Molecular Physics, Volume 109 (2011) no. 1, p. 75 | DOI:10.1080/00268976.2010.520754
  • Helena Dodziuk Endohedral Fullerene Complexes and In-Out Isomerism in Perhydrogenated Fullerenes, The Mathematics and Topology of Fullerenes, Volume 4 (2011), p. 117 | DOI:10.1007/978-94-007-0221-9_7
  • Baomin Sun; Yuanchao Liu; Zhaoyong Ding; Huifii Zhao; Wei Li, 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems (2010), p. 219 | DOI:10.1109/nems.2010.5592192
  • Natalia M. Martin; Serhiy M. Luzan; Alexandr V. Talyzin High-temperature reactions of C60 with polycyclic aromatic hydrocarbons, Chemical Physics, Volume 368 (2010) no. 1-2, p. 49 | DOI:10.1016/j.chemphys.2009.12.008
  • Tatiana Borodina; Dmitry Grigoriev; Helmuth Möhwald; Dmitry Shchukin Hydrogenstorage materials protected by a polymer shell, J. Mater. Chem., Volume 20 (2010) no. 8, p. 1452 | DOI:10.1039/b920470a
  • Serhiy M. Luzan; A.V. Talyzin Hydrogen adsorption in Pt catalyst/MOF-5 materials, Microporous and Mesoporous Materials, Volume 135 (2010) no. 1-3, p. 201 | DOI:10.1016/j.micromeso.2010.07.018
  • Malti Bansal; C. Lal; Ritu Srivastava; M.N. Kamalasanan; L.S. Tanwar Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method, Physica B: Condensed Matter, Volume 405 (2010) no. 7, p. 1745 | DOI:10.1016/j.physb.2010.01.031
  • L. N. Solodkova; B. F. Lyakhov; A. G. Lipson; A. Yu. Tsivadze Electrochemical sorption of hydrogen in single-wall carbon nanotubes encapsulated in palladium, Protection of Metals and Physical Chemistry of Surfaces, Volume 46 (2010) no. 5, p. 524 | DOI:10.1134/s2070205110050035
  • T. N. Borodina; D. O. Grigoriev; D. V. Andreeva; H. Möhwald; D. G. Shchukin Polyelectrolyte Multilayered Nanofilms as a Novel Approach for the Protection of Hydrogen Storage Materials, ACS Applied Materials Interfaces, Volume 1 (2009) no. 5, p. 996 | DOI:10.1021/am8002236
  • Seung Mi Lee; Xiang‐Dong Kang; Ping Wang; Hui‐Ming Cheng; Young Hee Lee A Comparative Study of the Structural, Electronic, and Vibrational Properties of NH3BH3 and LiNH2BH3: Theory and Experiment, ChemPhysChem, Volume 10 (2009) no. 11, p. 1825 | DOI:10.1002/cphc.200900283
  • Joan Llorens; Marc Pera-Titus Influence of surface heterogeneity on hydrogen adsorption on activated carbons, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 350 (2009) no. 1-3, p. 63 | DOI:10.1016/j.colsurfa.2009.08.035
  • A.G. Lipson; B.F. Lyakhov; E.I. Saunin; L.N. Solodkova; A.Yu. Tsivadze Evidence for large hydrogen capacity in single-walled carbon nanotubes encapsulated by thin Pd layers onto a Pd substrate, Diamond and Related Materials, Volume 18 (2009) no. 5-8, p. 984 | DOI:10.1016/j.diamond.2008.11.029
  • K.M. Brieño-Enriquez; J. Ledesma-García; J.J. Perez-Bueno; Luis A. Godinez; H. Terrones; C. Ángeles-Chavez Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach, Materials Chemistry and Physics, Volume 115 (2009) no. 2-3, p. 521 | DOI:10.1016/j.matchemphys.2009.02.004
  • Carbons and Nanocarbons, Nanomaterials for Solid State Hydrogen Storage (2009), p. 291 | DOI:10.1007/978-0-387-77712-2_4
  • Serguei Patchkovskii; Thomas Heine Quantized liquid density-functional theory for hydrogen adsorption in nanoporous materials, Physical Review E, Volume 80 (2009) no. 3 | DOI:10.1103/physreve.80.031603
  • A. Vaseashta Nanomaterials Nexus in Environmental, Human Health, and Sustainability, Silicon Versus Carbon (2009), p. 105 | DOI:10.1007/978-90-481-2523-4_9
  • Ravi Joshi; Jörg Engstler; Prathap Haridoss; Jörg J. Schneider Formation of carbon nanotubes from a silicon carbide/carbon composite, Solid State Sciences, Volume 11 (2009) no. 2, p. 422 | DOI:10.1016/j.solidstatesciences.2008.07.012
  • J. Karl Johnson; Milton W. Cole Hydrogen Adsorption in Single-Walled Carbon Nanotubes, Adsorption by Carbons (2008), p. 369 | DOI:10.1016/b978-008044464-2.50019-5
  • Lifeng Wang; Ralph T. Yang New sorbents for hydrogen storage by hydrogen spillover – a review, Energy Environmental Science, Volume 1 (2008) no. 2, p. 268 | DOI:10.1039/b807957a
  • Fariba Sadat Hashemi; Alireza Zolfaghari; Parisa Pourhossein; Hossein Zolfghari Jooya Methane Physisorption on Single‐walled Carbon Nanotubes: A Molecular Dynamics Study, Fullerenes, Nanotubes and Carbon Nanostructures, Volume 16 (2008) no. 3, p. 186 | DOI:10.1080/15363830802042654
  • A. Vaseashta Nanoscale Materials, Devices, and Systems for Chem.-Bio Sensors, Photonics, and Energy Generation and Storage, Functionalized Nanoscale Materials, Devices and Systems (2008), p. 3 | DOI:10.1007/978-1-4020-8903-9_1
  • A. G. Lipson; E. I. Saunin; B. F. Lyakhov; A. Yu. Tsivadze Paramagnetic centers in single-walled carbon nanotubes encapsulated with palladium and their interaction with hydrogen at H/C ≥ 1.0, JETP Letters, Volume 88 (2008) no. 3, p. 178 | DOI:10.1134/s0021364008150071
  • Qiuling Zhou; Chunzhong Li; Feng Gu; H.L. Du Flame synthesis of carbon nanotubes with high density on stainless steel mesh, Journal of Alloys and Compounds, Volume 463 (2008) no. 1-2, p. 317 | DOI:10.1016/j.jallcom.2007.09.021
  • Qiu-Ling ZHOU Effects of Ni Coated Cordierite Catalyst on Flame Synthesis of Carbon Nanotubes, Journal of Inorganic Materials, Volume 23 (2008) no. 4, p. 805 | DOI:10.3724/sp.j.1077.2008.00805
  • Ashok Vaseashta; Renata Reisfeld; Ion N. Mihailescu Green Nanotechnologies for Responsible Manufacturing, MRS Proceedings, Volume 1106 (2008) | DOI:10.1557/proc-1106-pp03-05
  • Soumik Banerjee; Ishwar K Puri Enhancement in hydrogen storage in carbon nanotubes under modified conditions, Nanotechnology, Volume 19 (2008) no. 15, p. 155702 | DOI:10.1088/0957-4484/19/15/155702
  • A. G. Lipson; B. F. Lyakhov; E. I. Saunin; A. Yu. Tsivadze Evidence for large hydrogen storage capacity in single-walled carbon nanotubes encapsulated by electroplating Pd onto a Pd substrate, Physical Review B, Volume 77 (2008) no. 8 | DOI:10.1103/physrevb.77.081405
  • P. BÉNARD; R. CHAHINE Carbon nanostructures for hydrogen storage, Solid-State Hydrogen Storage (2008), p. 261 | DOI:10.1533/9781845694944.3.261
  • S. Bhattacharya; C. Majumder; G. P. Das Hydrogen Storage in Ti-Decorated BC4N Nanotube, The Journal of Physical Chemistry C, Volume 112 (2008) no. 45, p. 17487 | DOI:10.1021/jp807280w
  • P. Bénard; R. Chahine; P.A. Chandonia; D. Cossement; G. Dorval-Douville; L. Lafi; P. Lachance; R. Paggiaro; E. Poirier Comparison of hydrogen adsorption on nanoporous materials, Journal of Alloys and Compounds, Volume 446-447 (2007), p. 380 | DOI:10.1016/j.jallcom.2006.11.192
  • D.P. Broom; P. Moretto Accuracy in hydrogen sorption measurements, Journal of Alloys and Compounds, Volume 446-447 (2007), p. 687 | DOI:10.1016/j.jallcom.2007.03.022
  • Michael Felderhoff; Claudia Weidenthaler; Rittmar von Helmolt; Ulrich Eberle Hydrogen storage: the remaining scientific and technological challenges, Physical Chemistry Chemical Physics, Volume 9 (2007) no. 21, p. 2643 | DOI:10.1039/b701563c
  • V. R. Coluci; S. F. Braga; R. H. Baughman; D. S. Galvão Prediction of the hydrogen storage capacity of carbon nanoscrolls, Physical Review B, Volume 75 (2007) no. 12 | DOI:10.1103/physrevb.75.125404
  • Giannis Mpourmpakis; George E. Froudakis; George P. Lithoxoos; Jannis Samios Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: A Combined ab initio and Monte Carlo investigation, The Journal of Chemical Physics, Volume 126 (2007) no. 14 | DOI:10.1063/1.2717170
  • Xiang Lin; Junhua Jia; Xuebo Zhao; K. Mark Thomas; Alexander J. Blake; Gavin S. Walker; Neil R. Champness; Peter Hubberstey; Martin Schröder High H2 Adsorption by Coordination‐Framework Materials, Angewandte Chemie, Volume 118 (2006) no. 44, p. 7518 | DOI:10.1002/ange.200601991
  • Michel Latroche; Suzy Surblé; Christian Serre; Caroline Mellot‐Draznieks; Philip L. Llewellyn; Jin‐Ho Lee; Jong‐San Chang; Sung Hwa Jhung; Gérard Férey Hydrogen Storage in the Giant‐Pore Metal–Organic Frameworks MIL‐100 and MIL‐101, Angewandte Chemie, Volume 118 (2006) no. 48, p. 8407 | DOI:10.1002/ange.200600105
  • Xiang Lin; Junhua Jia; Xuebo Zhao; K. Mark Thomas; Alexander J. Blake; Gavin S. Walker; Neil R. Champness; Peter Hubberstey; Martin Schröder High H2 Adsorption by Coordination‐Framework Materials, Angewandte Chemie International Edition, Volume 45 (2006) no. 44, p. 7358 | DOI:10.1002/anie.200601991
  • Michel Latroche; Suzy Surblé; Christian Serre; Caroline Mellot‐Draznieks; Philip L. Llewellyn; Jin‐Ho Lee; Jong‐San Chang; Sung Hwa Jhung; Gérard Férey Hydrogen Storage in the Giant‐Pore Metal–Organic Frameworks MIL‐100 and MIL‐101, Angewandte Chemie International Edition, Volume 45 (2006) no. 48, p. 8227 | DOI:10.1002/anie.200600105
  • Eduard Rakov Chemistry of Carbon Nanotubes, Carbon Nanomaterials, Volume 20065971 (2006), p. 77 | DOI:10.1201/9781420009378.ch3
  • J. Pettersson; B. Ramsey; D. Harrison A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells, Journal of Power Sources, Volume 157 (2006) no. 1, p. 28 | DOI:10.1016/j.jpowsour.2006.01.059
  • Eduard Rakov Chemistry of Carbon Nanotubes, Nanomaterials Handbook (2006) | DOI:10.1201/9781420004014.ch5
  • Eduard Rakov Chemistry of Carbon Nanotubes, Nanotubes and Nanofibers, Volume 20066077 (2006), p. 37 | DOI:10.1201/9781420009385.ch2
  • Rohini C. Lochan; Martin Head-Gordon Computational studies of molecular hydrogen binding affinities: The role of dispersion forces, electrostatics, and orbital interactions, Physical Chemistry Chemical Physics, Volume 8 (2006) no. 12, p. 1357 | DOI:10.1039/b515409j
  • B. Weinberger; F. Darkrim-Lamari; D. Levesque Capillary condensation and adsorption of binary mixtures, The Journal of Chemical Physics, Volume 124 (2006) no. 23 | DOI:10.1063/1.2205848
  • Jesse L. C. Rowsell; Omar M. Yaghi Strategien für die Wasserstoffspeicherung in metall‐organischen Kompositgerüsten, Angewandte Chemie, Volume 117 (2005) no. 30, p. 4748 | DOI:10.1002/ange.200462786
  • Jesse L. C. Rowsell; Omar M. Yaghi Strategies for Hydrogen Storage in Metal–Organic Frameworks, Angewandte Chemie International Edition, Volume 44 (2005) no. 30, p. 4670 | DOI:10.1002/anie.200462786
  • A Tribute to Michele Parrinello: Publications in Peer‐Reviewed Journals Including Review Articles (1971–2004), ChemPhysChem, Volume 6 (2005) no. 9, p. 1677 | DOI:10.1002/cphc.200500442
  • Ashleigh J. Fletcher; K. Mark Thomas; Matthew J. Rosseinsky Flexibility in metal-organic framework materials: Impact on sorption properties, Journal of Solid State Chemistry, Volume 178 (2005) no. 8, p. 2491 | DOI:10.1016/j.jssc.2005.05.019
  • Naruhiro Koi; Takeo Oku; Kat suaki Suganuma Effects of endohedral element in B24N24 clusters on hydrogenation studied by molecular orbital calculations, Physica E: Low-dimensional Systems and Nanostructures, Volume 29 (2005) no. 3-4, p. 541 | DOI:10.1016/j.physe.2005.06.023
  • Yueyuan Xia; John Zhonghua Zhu; Mingwen Zhao; Feng Li; Boda Huang; Yanju Ji; Xiangdong Liu; Zhenyu Tan; Chen Song; Yanyan Yin Enhancement of hydrogen physisorption on single-walled carbon nanotubes resulting from defects created by carbon bombardment, Physical Review B, Volume 71 (2005) no. 7 | DOI:10.1103/physrevb.71.075412
  • Jesse L. C. Rowsell; Andrew R. Millward; Kyo Sung Park; Omar M. Yaghi Hydrogen Sorption in Functionalized Metal−Organic Frameworks, Journal of the American Chemical Society, Volume 126 (2004) no. 18, p. 5666 | DOI:10.1021/ja049408c
  • Naruhiro Koi; Takeo Oku Molecular orbital calculations of hydrogen storage in carbon and boron nitride clusters, Science and Technology of Advanced Materials, Volume 5 (2004) no. 5-6, p. 625 | DOI:10.1016/j.stam.2004.02.024
  • Naruhiro Koi; Takeo Oku Hydrogen storage in boron nitride and carbon clusters studied by molecular orbital calculations, Solid State Communications, Volume 131 (2004) no. 2, p. 121 | DOI:10.1016/j.ssc.2004.04.037

Cité par 99 documents. Sources : Crossref

Commentaires - Politique