[Stockage d'hydrogène dans les nanotubes de carbone]
Le stockage d'hydrogène dans les nouvelles nano-structures de carbone est un sujet vivement débattu. Les mesures de la capacité de stockage de ces matériaux effectuées dans les dix dernières années s'échelonnent sur une gamme très large, de 0,1 % jusqu'à 67 % en poids. Cet article présente l'état de l'art en ce qui concerne le stockage d'hydrogène dans les nano-structures de carbone. Nous discutons de façon critique les récentes « publications clés » se rapportant à ce sujet qui annoncent des capacités de stockage largement supérieures aux références imposées par le Département de l'Energie américain et présentons les derniers résultats obtenus dans le cadre d'un projet commun sponsorisé par le Ministère Fédéral de l'Education et de la Recherche allemand.
Hydrogen storage in new nano-structured carbonic materials is a topic for lively discussion. The measured storage capacities of these materials, which have been announced in the literature during the last ten years are spread over an enormous range from about 0.1 wt% up to 67 wt%. This paper will give a report on the state of the art of hydrogen storage in carbon nano-structures. We shall critically review the recent ‘key publications’ on this topic, which claim storage capacities clearly above the technological bench mark set by the US Department of Energy, and we shall report new results which have been obtained in a joint project sponsored by the Federal Ministry for Education and Research in Germany (BMBF).
Mots-clés : Stockage d'hydrogène, Nanotubes de carbone, Graphite nanostructuré
M. Becher 1 ; M. Haluska 1 ; M. Hirscher 1 ; A. Quintel 2 ; V. Skakalova 2 ; U. Dettlaff-Weglikovska 2 ; X. Chen 2 ; M. Hulman 2 ; Y. Choi 2 ; S. Roth 2 ; V. Meregalli 2 ; M. Parrinello 2 ; R. Ströbel 3 ; L. Jörissen 3 ; M.M. Kappes 4 ; J. Fink 5 ; A. Züttel 6 ; I. Stepanek 7 ; P. Bernier 7
@article{CRPHYS_2003__4_9_1055_0, author = {M. Becher and M. Haluska and M. Hirscher and A. Quintel and V. Skakalova and U. Dettlaff-Weglikovska and X. Chen and M. Hulman and Y. Choi and S. Roth and V. Meregalli and M. Parrinello and R. Str\"obel and L. J\"orissen and M.M. Kappes and J. Fink and A. Z\"uttel and I. Stepanek and P. Bernier}, title = {Hydrogen storage in carbon nanotubes}, journal = {Comptes Rendus. Physique}, pages = {1055--1062}, publisher = {Elsevier}, volume = {4}, number = {9}, year = {2003}, doi = {10.1016/S1631-0705(03)00107-5}, language = {en}, }
TY - JOUR AU - M. Becher AU - M. Haluska AU - M. Hirscher AU - A. Quintel AU - V. Skakalova AU - U. Dettlaff-Weglikovska AU - X. Chen AU - M. Hulman AU - Y. Choi AU - S. Roth AU - V. Meregalli AU - M. Parrinello AU - R. Ströbel AU - L. Jörissen AU - M.M. Kappes AU - J. Fink AU - A. Züttel AU - I. Stepanek AU - P. Bernier TI - Hydrogen storage in carbon nanotubes JO - Comptes Rendus. Physique PY - 2003 SP - 1055 EP - 1062 VL - 4 IS - 9 PB - Elsevier DO - 10.1016/S1631-0705(03)00107-5 LA - en ID - CRPHYS_2003__4_9_1055_0 ER -
%0 Journal Article %A M. Becher %A M. Haluska %A M. Hirscher %A A. Quintel %A V. Skakalova %A U. Dettlaff-Weglikovska %A X. Chen %A M. Hulman %A Y. Choi %A S. Roth %A V. Meregalli %A M. Parrinello %A R. Ströbel %A L. Jörissen %A M.M. Kappes %A J. Fink %A A. Züttel %A I. Stepanek %A P. Bernier %T Hydrogen storage in carbon nanotubes %J Comptes Rendus. Physique %D 2003 %P 1055-1062 %V 4 %N 9 %I Elsevier %R 10.1016/S1631-0705(03)00107-5 %G en %F CRPHYS_2003__4_9_1055_0
M. Becher; M. Haluska; M. Hirscher; A. Quintel; V. Skakalova; U. Dettlaff-Weglikovska; X. Chen; M. Hulman; Y. Choi; S. Roth; V. Meregalli; M. Parrinello; R. Ströbel; L. Jörissen; M.M. Kappes; J. Fink; A. Züttel; I. Stepanek; P. Bernier. Hydrogen storage in carbon nanotubes. Comptes Rendus. Physique, carbon nanotubes: state of the art and applications, Volume 4 (2003) no. 9, pp. 1055-1062. doi : 10.1016/S1631-0705(03)00107-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00107-5/
[1] Appl. Phys. A, 72 (2001), p. 143
[2] J. Chem. Phys., 110 (1998) no. 1, p. 577
[3] J. Phys. Chem. B, 103 (1999) no. 2, p. 277
[4] J. Phys. Chem. B, 103 (1999) no. 23, p. 4809
[5] J. Phys. Chem. B, 102 (1998), p. 10894
[6] J. Chem. Phys., 110 (1999) no. 8, p. 4020
[7] J. Phys. Chem. B, 104 (1999) no. 29, p. 6773
[8] Langmuir, 16 (2000), p. 10521
[9] Chem. Phys. Lett., 320 (2000), p. 352
[10] Appl. Phys. Lett., 76 (2000) no. 20, p. 2877
[11] Synthetic Metals, 113 (2000), p. 209
[12] Synthetic Metals, 121 (2001), p. 1189
[13] J. Am. Chem. Soc., 123 (2001) no. 21, p. 5059
[14] Phys. Rev. B, 63 (2001), p. 115422
[15] Phys. Rev. B, 63 (2001), p. 155405
[16] Chem. Phys. Lett., 322 (2000), p. 237
[17] Nano Lett., 1 (2001) no. 5, p. 223
[18] J. Am. Chem. Soc., 123 (2001), p. 5845
[19] J. Phys. Chem. B, 102 (1998), p. 4253
[20] J. Phys. Chem., 103 (1999), p. 10572
[21] Appl. Phys. Lett., 73 (1998) no. 23, p. 3378
[22] Carbon, 37 (1999), p. 1649
[23] Z. Metallkunde, 91 (2000), p. 306
[24] Science, 286 (1999), p. 1127
[25] Int. J. Hydrogen Energy, 26 (2001), p. 857
[26] Carbon, 39 (2001), p. 2291
[27] Appl. Phys. Lett., 74 (1999) no. 16, p. 2307
[28] Mat. Res. Soc. Symp. Proc., 706 (2002), p. Z9.11.1
[29] Appl. Phys. Lett., 80 (2002) no. 16, p. 2985
[30] Appl. Phys. A, 72 (2001), p. 619
[31] J. Alloys Comp., 676 (2002), p. 320
[32] Int. J. Hydrogen Energy, 27 (2002), p. 203
[33] Nature, 414 (2001), p. 353
[34] Adv. Phys., 30 (1981), p. 139
[35] Science, 285 (1999), p. 91
[36] Carbon, 38 (2000), p. 623
[37] J. Phys. Chem., 104 (2000), p. 9460
[38] Ann. Chim. Phys., 15 (1908), p. 433
[39] Handbuch der anorganischen Chemie, Verlag Chemie, Berlin, 1927 (p. 71)
[40] Chem. Phys. Lett., 365 (2002), p. 333
[41] Nature, 386 (1997), p. 377
[42] A.C. Dillon, T. Gennett, K.M. Jones, J.L. Alleman, P.A. Parilla, M.J. Heben, Proceedings of the 2000 Hydrogen Program Review NREL/CP-507-28890, 2000
[43] Hydrogen storage in sonicated carbon materials, Appl. Phys. A, Volume 72 (2001) no. 2, p. 129
[44] IEA/DOE/SNL On-line database, http://hydpark.ca.sandia.gov
[45] A.C. Dillon, K.E.H. Gilbert, J.L. Alleman, T. Gennett, K.M. Jones, P.A. Parilla, M.J. Heben, Proceedings of the 2001 U.S. DOE Hydrogen Program Review NREL/CP-570-30535, 2001
[46] A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman, G.L. Hornyak, K.M. Jones, M.J. Heben, Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405
- Bibliometric review of carbonaceous-based sorbent for hydrogen storage, Clean Technologies and Environmental Policy, Volume 27 (2025) no. 2, p. 861 | DOI:10.1007/s10098-024-03096-3
- Innovative Materials and Techniques for Enhancing Hydrogen Storage: A Comprehensive Review of Damage Detection and Preventive Strategies, ASME Open Journal of Engineering, Volume 3 (2024) | DOI:10.1115/1.4065360
- Nanomaterials: paving the way for the hydrogen energy frontier, Discover Nano, Volume 19 (2024) no. 1 | DOI:10.1186/s11671-023-03949-8
- Can endohedral transition metals enhance hydrogen storage in carbon nanotubes?, International Journal of Hydrogen Energy, Volume 55 (2024), p. 604 | DOI:10.1016/j.ijhydene.2023.11.195
- Tuning the hydrogen storage capacity of MOF‐650 by Mg2+/Ca2+ substitution and B, N co‐doped atoms: Grand canonical Monte Carlo simulation and periodic density functional theory, International Journal of Quantum Chemistry, Volume 124 (2024) no. 1 | DOI:10.1002/qua.27282
- Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review, Sustainability, Volume 16 (2024) no. 19, p. 8659 | DOI:10.3390/su16198659
- Recent progress for hydrogen production from ammonia and hydrous hydrazine decomposition: A review on heterogeneous catalysts, Catalysis Today, Volume 423 (2023), p. 114022 | DOI:10.1016/j.cattod.2023.01.029
- Boronation of Biomass-Derived Materials for Hydrogen Storage, Compounds, Volume 3 (2023) no. 1, p. 244 | DOI:10.3390/compounds3010020
- Diverse carbonous nanocomposites of Ce2Y2O7 for boosting hydrogen storage capacity; Synthesis, characterization and electrochemical studies, Journal of Energy Storage, Volume 63 (2023), p. 107032 | DOI:10.1016/j.est.2023.107032
- Molecular hydrogen sorption capacity of P216-schwarzite: PM6-D3, MP2 and QTAIM approaches, Computational Materials Science, Volume 209 (2022), p. 111410 | DOI:10.1016/j.commatsci.2022.111410
- An Overview of Hydrogen Production: Current Status, Potential, and Challenges, Fuel, Volume 316 (2022), p. 123317 | DOI:10.1016/j.fuel.2022.123317
- Determination of positive anode sheath in anodic carbon arc for synthesis of nanomaterials, Journal of Physics D: Applied Physics, Volume 55 (2022) no. 11, p. 114001 | DOI:10.1088/1361-6463/ac3bf2
- Toward hydrogen storage material in fluorinated zirconium metal-organic framework (MOF-801): A periodic density functional theory (DFT) study of fluorination and adsorption, International Journal of Hydrogen Energy, Volume 46 (2021) no. 5, p. 4222 | DOI:10.1016/j.ijhydene.2020.10.222
- Emergence of carbon nanoscrolls from single walled carbon nanotubes: an oxidative route, Physical Chemistry Chemical Physics, Volume 23 (2021) no. 48, p. 27437 | DOI:10.1039/d1cp03945h
- Pulling Simulations and Hydrogen Sorption Modelling on Carbon Nanotube Bundles, C, Volume 6 (2020) no. 1, p. 11 | DOI:10.3390/c6010011
- Engineering MIL‐88B crystallites for enhanced H 2 uptake capacity: The role of ultramicropores, International Journal of Energy Research, Volume 44 (2020) no. 4, p. 2875 | DOI:10.1002/er.5104
- A remarkable increase in the adsorbed H2 amount: Influence of pore size distribution on the H2 adsorption capacity of Fe-BTC, International Journal of Hydrogen Energy, Volume 45 (2020) no. 22, p. 12394 | DOI:10.1016/j.ijhydene.2020.02.202
- Materials for hydrogen-based energy storage – past, recent progress and future outlook, Journal of Alloys and Compounds, Volume 827 (2020), p. 153548 | DOI:10.1016/j.jallcom.2019.153548
- Over saturated metallic-Mg-ions diffused hollow carbon nano-spheres/Pt for ultrahigh-performance hydrogen storage, Materials Letters, Volume 221 (2018), p. 139 | DOI:10.1016/j.matlet.2018.03.104
- Physisorption of H2 on Fullerenes and the Solvation of C60 by Hydrogen Clusters at Finite Temperature: A Theoretical Assessment, The Journal of Physical Chemistry A, Volume 122 (2018) no. 10, p. 2792 | DOI:10.1021/acs.jpca.8b00163
- Molecular hydrogen sorption capacity of D -shwarzites, Applied Surface Science, Volume 416 (2017), p. 766 | DOI:10.1016/j.apsusc.2017.04.161
- Functionalised hybrid Poly(ether ether ketone) containing MnO2: Investigation of operative conditions for hydrogen sorption, International Journal of Hydrogen Energy, Volume 42 (2017) no. 15, p. 10089 | DOI:10.1016/j.ijhydene.2017.02.111
- Pitfalls in the characterisation of the hydrogen sorption properties of materials, International Journal of Hydrogen Energy, Volume 42 (2017) no. 49, p. 29320 | DOI:10.1016/j.ijhydene.2017.10.028
- Graphene decorated with metal nanoparticles: Hydrogen sorption and related artefacts, Microporous and Mesoporous Materials, Volume 250 (2017), p. 27 | DOI:10.1016/j.micromeso.2017.05.014
- Adsorption of hydrogen on carbon nanostructure, Compendium of Hydrogen Energy (2016), p. 147 | DOI:10.1016/b978-1-78242-362-1.00006-7
- Irreproducibility in hydrogen storage material research, Energy Environmental Science, Volume 9 (2016) no. 11, p. 3368 | DOI:10.1039/c6ee01435f
- Chapter 6 The Hydrogen Initiative: Technological Advancements and Storage Challenges, Energy Security and Sustainability (2016), p. 135 | DOI:10.1201/9781315368047-7
- Hydrogen physisorption energies for bumpy, saturated, nitrogen-doped single-walled carbon nanotubes, Structural Chemistry, Volume 27 (2016) no. 5, p. 1479 | DOI:10.1007/s11224-016-0767-0
- Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes, Frontiers in Chemistry, Volume 3 (2015) | DOI:10.3389/fchem.2015.00002
- Hydrogen Storage Options Including Constraints and Challenges, Hydrogen Production (2015), p. 273 | DOI:10.1002/9783527676507.ch7
- Hydrogen storage in bulk graphene-related materials, Microporous and Mesoporous Materials, Volume 210 (2015), p. 46 | DOI:10.1016/j.micromeso.2015.02.017
- Catalytic Application of Carbon‐based Nanostructured Materials on Hydrogen Sorption Behavior of Light Metal Hydrides, Advanced Carbon Materials and Technology (2014), p. 129 | DOI:10.1002/9781118895399.ch4
- Evaluating the hydrogen chemisorption and physisorption energies for nitrogen-containing single-walled carbon nanotubes with different chiralities: a density functional theory study, Structural Chemistry, Volume 25 (2014) no. 4, p. 1045 | DOI:10.1007/s11224-013-0377-z
- Thermocatalytic Conversion of Coal Soot to Carbon Nanorods, Fullerenes, Nanotubes and Carbon Nanostructures, Volume 21 (2013) no. 2, p. 171 | DOI:10.1080/1536383x.2011.613537
- Even More Applications, One‐Dimensional Metals (2013), p. 307 | DOI:10.1002/9783527690176.ch11
- The past, present and future of heterogeneous catalysis, Catalysis Today, Volume 189 (2012) no. 1, p. 2 | DOI:10.1016/j.cattod.2012.04.003
- Assessment of hydrogen storage by physisorption in porous materials, Energy Environmental Science, Volume 5 (2012) no. 8, p. 8294 | DOI:10.1039/c2ee22037g
- Novel Materials, Hydrogen Storage Technologies (2012), p. 225 | DOI:10.1002/9783527649921.ch7
- Hydrogen transport in single-walled carbon nanotubes encapsulated by palladium, International Journal of Hydrogen Energy, Volume 37 (2012) no. 7, p. 5676 | DOI:10.1016/j.ijhydene.2009.12.173
- Carbon nanotube structure, synthesis, and applications, The Toxicology of Carbon Nanotubes (2012), p. 1 | DOI:10.1017/cbo9780511919893.001
- Packings of Carbon Nanotubes – New Materials for Hydrogen Storage, Advanced Materials, Volume 23 (2011) no. 10, p. 1237 | DOI:10.1002/adma.201003669
- Effect of Helium on Synthesis of Carbon Nanotubes from the V-Type Pyrolysis Flame, Advanced Materials Research, Volume 221 (2011), p. 540 | DOI:10.4028/www.scientific.net/amr.221.540
- Hydrogen Adsorption and Storage, Coal Gasification and Its Applications (2011), p. 157 | DOI:10.1016/b978-0-8155-2049-8.10008-7
- Path integral molecular dynamics for hydrogen adsorption site of zeolite-templated carbon with semi-empirical PM3 potential, Computational and Theoretical Chemistry, Volume 975 (2011) no. 1-3, p. 128 | DOI:10.1016/j.comptc.2010.12.028
- Introduction, Hydrogen Storage Materials (2011), p. 1 | DOI:10.1007/978-0-85729-221-6_1
- Nuclear quantum effect on hydrogen adsorption site of zeolite-templated carbon model using path integral molecular dynamics, Journal of Alloys and Compounds, Volume 509 (2011), p. S868 | DOI:10.1016/j.jallcom.2010.10.066
- Density profiles of atoms in nano-tubes from an analytic method: hydrogen in a cylindrical pore, Molecular Physics, Volume 109 (2011) no. 1, p. 75 | DOI:10.1080/00268976.2010.520754
- Endohedral Fullerene Complexes and In-Out Isomerism in Perhydrogenated Fullerenes, The Mathematics and Topology of Fullerenes, Volume 4 (2011), p. 117 | DOI:10.1007/978-94-007-0221-9_7
- , 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems (2010), p. 219 | DOI:10.1109/nems.2010.5592192
- High-temperature reactions of C60 with polycyclic aromatic hydrocarbons, Chemical Physics, Volume 368 (2010) no. 1-2, p. 49 | DOI:10.1016/j.chemphys.2009.12.008
- Hydrogenstorage materials protected by a polymer shell, J. Mater. Chem., Volume 20 (2010) no. 8, p. 1452 | DOI:10.1039/b920470a
- Hydrogen adsorption in Pt catalyst/MOF-5 materials, Microporous and Mesoporous Materials, Volume 135 (2010) no. 1-3, p. 201 | DOI:10.1016/j.micromeso.2010.07.018
- Comparison of structure and yield of multiwall carbon nanotubes produced by the CVD technique and a water assisted method, Physica B: Condensed Matter, Volume 405 (2010) no. 7, p. 1745 | DOI:10.1016/j.physb.2010.01.031
- Electrochemical sorption of hydrogen in single-wall carbon nanotubes encapsulated in palladium, Protection of Metals and Physical Chemistry of Surfaces, Volume 46 (2010) no. 5, p. 524 | DOI:10.1134/s2070205110050035
- Polyelectrolyte Multilayered Nanofilms as a Novel Approach for the Protection of Hydrogen Storage Materials, ACS Applied Materials Interfaces, Volume 1 (2009) no. 5, p. 996 | DOI:10.1021/am8002236
- A Comparative Study of the Structural, Electronic, and Vibrational Properties of NH3BH3 and LiNH2BH3: Theory and Experiment, ChemPhysChem, Volume 10 (2009) no. 11, p. 1825 | DOI:10.1002/cphc.200900283
- Influence of surface heterogeneity on hydrogen adsorption on activated carbons, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 350 (2009) no. 1-3, p. 63 | DOI:10.1016/j.colsurfa.2009.08.035
- Evidence for large hydrogen capacity in single-walled carbon nanotubes encapsulated by thin Pd layers onto a Pd substrate, Diamond and Related Materials, Volume 18 (2009) no. 5-8, p. 984 | DOI:10.1016/j.diamond.2008.11.029
- Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach, Materials Chemistry and Physics, Volume 115 (2009) no. 2-3, p. 521 | DOI:10.1016/j.matchemphys.2009.02.004
- Carbons and Nanocarbons, Nanomaterials for Solid State Hydrogen Storage (2009), p. 291 | DOI:10.1007/978-0-387-77712-2_4
- Quantized liquid density-functional theory for hydrogen adsorption in nanoporous materials, Physical Review E, Volume 80 (2009) no. 3 | DOI:10.1103/physreve.80.031603
- Nanomaterials Nexus in Environmental, Human Health, and Sustainability, Silicon Versus Carbon (2009), p. 105 | DOI:10.1007/978-90-481-2523-4_9
- Formation of carbon nanotubes from a silicon carbide/carbon composite, Solid State Sciences, Volume 11 (2009) no. 2, p. 422 | DOI:10.1016/j.solidstatesciences.2008.07.012
- Hydrogen Adsorption in Single-Walled Carbon Nanotubes, Adsorption by Carbons (2008), p. 369 | DOI:10.1016/b978-008044464-2.50019-5
- New sorbents for hydrogen storage by hydrogen spillover – a review, Energy Environmental Science, Volume 1 (2008) no. 2, p. 268 | DOI:10.1039/b807957a
- Methane Physisorption on Single‐walled Carbon Nanotubes: A Molecular Dynamics Study, Fullerenes, Nanotubes and Carbon Nanostructures, Volume 16 (2008) no. 3, p. 186 | DOI:10.1080/15363830802042654
- Nanoscale Materials, Devices, and Systems for Chem.-Bio Sensors, Photonics, and Energy Generation and Storage, Functionalized Nanoscale Materials, Devices and Systems (2008), p. 3 | DOI:10.1007/978-1-4020-8903-9_1
- Paramagnetic centers in single-walled carbon nanotubes encapsulated with palladium and their interaction with hydrogen at H/C ≥ 1.0, JETP Letters, Volume 88 (2008) no. 3, p. 178 | DOI:10.1134/s0021364008150071
- Flame synthesis of carbon nanotubes with high density on stainless steel mesh, Journal of Alloys and Compounds, Volume 463 (2008) no. 1-2, p. 317 | DOI:10.1016/j.jallcom.2007.09.021
- Effects of Ni Coated Cordierite Catalyst on Flame Synthesis of Carbon Nanotubes, Journal of Inorganic Materials, Volume 23 (2008) no. 4, p. 805 | DOI:10.3724/sp.j.1077.2008.00805
- Green Nanotechnologies for Responsible Manufacturing, MRS Proceedings, Volume 1106 (2008) | DOI:10.1557/proc-1106-pp03-05
- Enhancement in hydrogen storage in carbon nanotubes under modified conditions, Nanotechnology, Volume 19 (2008) no. 15, p. 155702 | DOI:10.1088/0957-4484/19/15/155702
- Evidence for large hydrogen storage capacity in single-walled carbon nanotubes encapsulated by electroplating Pd onto a Pd substrate, Physical Review B, Volume 77 (2008) no. 8 | DOI:10.1103/physrevb.77.081405
- Carbon nanostructures for hydrogen storage, Solid-State Hydrogen Storage (2008), p. 261 | DOI:10.1533/9781845694944.3.261
- Hydrogen Storage in Ti-Decorated BC4N Nanotube, The Journal of Physical Chemistry C, Volume 112 (2008) no. 45, p. 17487 | DOI:10.1021/jp807280w
- Comparison of hydrogen adsorption on nanoporous materials, Journal of Alloys and Compounds, Volume 446-447 (2007), p. 380 | DOI:10.1016/j.jallcom.2006.11.192
- Accuracy in hydrogen sorption measurements, Journal of Alloys and Compounds, Volume 446-447 (2007), p. 687 | DOI:10.1016/j.jallcom.2007.03.022
- Hydrogen storage: the remaining scientific and technological challenges, Physical Chemistry Chemical Physics, Volume 9 (2007) no. 21, p. 2643 | DOI:10.1039/b701563c
- Prediction of the hydrogen storage capacity of carbon nanoscrolls, Physical Review B, Volume 75 (2007) no. 12 | DOI:10.1103/physrevb.75.125404
- Effect of curvature and chirality for hydrogen storage in single-walled carbon nanotubes: A Combined ab initio and Monte Carlo investigation, The Journal of Chemical Physics, Volume 126 (2007) no. 14 | DOI:10.1063/1.2717170
- High H2 Adsorption by Coordination‐Framework Materials, Angewandte Chemie, Volume 118 (2006) no. 44, p. 7518 | DOI:10.1002/ange.200601991
- Hydrogen Storage in the Giant‐Pore Metal–Organic Frameworks MIL‐100 and MIL‐101, Angewandte Chemie, Volume 118 (2006) no. 48, p. 8407 | DOI:10.1002/ange.200600105
- High H2 Adsorption by Coordination‐Framework Materials, Angewandte Chemie International Edition, Volume 45 (2006) no. 44, p. 7358 | DOI:10.1002/anie.200601991
- Hydrogen Storage in the Giant‐Pore Metal–Organic Frameworks MIL‐100 and MIL‐101, Angewandte Chemie International Edition, Volume 45 (2006) no. 48, p. 8227 | DOI:10.1002/anie.200600105
- Chemistry of Carbon Nanotubes, Carbon Nanomaterials, Volume 20065971 (2006), p. 77 | DOI:10.1201/9781420009378.ch3
- A review of the latest developments in electrodes for unitised regenerative polymer electrolyte fuel cells, Journal of Power Sources, Volume 157 (2006) no. 1, p. 28 | DOI:10.1016/j.jpowsour.2006.01.059
- Chemistry of Carbon Nanotubes, Nanomaterials Handbook (2006) | DOI:10.1201/9781420004014.ch5
- Chemistry of Carbon Nanotubes, Nanotubes and Nanofibers, Volume 20066077 (2006), p. 37 | DOI:10.1201/9781420009385.ch2
- Computational studies of molecular hydrogen binding affinities: The role of dispersion forces, electrostatics, and orbital interactions, Physical Chemistry Chemical Physics, Volume 8 (2006) no. 12, p. 1357 | DOI:10.1039/b515409j
- Capillary condensation and adsorption of binary mixtures, The Journal of Chemical Physics, Volume 124 (2006) no. 23 | DOI:10.1063/1.2205848
- Strategien für die Wasserstoffspeicherung in metall‐organischen Kompositgerüsten, Angewandte Chemie, Volume 117 (2005) no. 30, p. 4748 | DOI:10.1002/ange.200462786
- Strategies for Hydrogen Storage in Metal–Organic Frameworks, Angewandte Chemie International Edition, Volume 44 (2005) no. 30, p. 4670 | DOI:10.1002/anie.200462786
- A Tribute to Michele Parrinello: Publications in Peer‐Reviewed Journals Including Review Articles (1971–2004), ChemPhysChem, Volume 6 (2005) no. 9, p. 1677 | DOI:10.1002/cphc.200500442
- Flexibility in metal-organic framework materials: Impact on sorption properties, Journal of Solid State Chemistry, Volume 178 (2005) no. 8, p. 2491 | DOI:10.1016/j.jssc.2005.05.019
- Effects of endohedral element in B24N24 clusters on hydrogenation studied by molecular orbital calculations, Physica E: Low-dimensional Systems and Nanostructures, Volume 29 (2005) no. 3-4, p. 541 | DOI:10.1016/j.physe.2005.06.023
- Enhancement of hydrogen physisorption on single-walled carbon nanotubes resulting from defects created by carbon bombardment, Physical Review B, Volume 71 (2005) no. 7 | DOI:10.1103/physrevb.71.075412
- Hydrogen Sorption in Functionalized Metal−Organic Frameworks, Journal of the American Chemical Society, Volume 126 (2004) no. 18, p. 5666 | DOI:10.1021/ja049408c
- Molecular orbital calculations of hydrogen storage in carbon and boron nitride clusters, Science and Technology of Advanced Materials, Volume 5 (2004) no. 5-6, p. 625 | DOI:10.1016/j.stam.2004.02.024
- Hydrogen storage in boron nitride and carbon clusters studied by molecular orbital calculations, Solid State Communications, Volume 131 (2004) no. 2, p. 121 | DOI:10.1016/j.ssc.2004.04.037
Cité par 99 documents. Sources : Crossref
Commentaires - Politique