Un grand nombre de contributions scientifiques ces dernières années proposent de véhiculer et manipuler l'information par des objets quantiques uniques. Tandis que des perspectives extrêmement impressionnantes sont projetées théoriquement, les réalisations expérimentales sont limitées en raison des insuffisances technologiques des dispositifs que l'état de l'art peut offrir à l'information quantique. Cet article présente des recherches visant à proposer des dispositifs semiconducteurs sources de photons uniques ou de photons jumeaux efficaces, qui permettraient de lever un verrou technologique important dans ce domaine.
A large number of scientific proposals in recent years are based on transport and manipulation of information using single quantum objects. Although very impressive theoretical perspectives have been envisaged, experimental demonstrations are still limited due to technological difficulties with present state-of-the-art devices. This paper presents various approaches aiming at efficient single or twin photons semiconductor sources. The emergence of these devices will be an important technological breakthrough in the field of quantum information.
Accepté le :
Publié le :
Keywords: Single photon source, Twin photons source, Quantum information, Quantum dot, Purcell effect, Parametric fluorescence, Modal phase matching
Vincent Berger 1, 2 ; Jean-Michel Gérard 3
@article{CRPHYS_2003__4_6_701_0, author = {Vincent Berger and Jean-Michel G\'erard}, title = {Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique}, journal = {Comptes Rendus. Physique}, pages = {701--713}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00109-9}, language = {fr}, }
TY - JOUR AU - Vincent Berger AU - Jean-Michel Gérard TI - Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique JO - Comptes Rendus. Physique PY - 2003 SP - 701 EP - 713 VL - 4 IS - 6 PB - Elsevier DO - 10.1016/S1631-0705(03)00109-9 LA - fr ID - CRPHYS_2003__4_6_701_0 ER -
Vincent Berger; Jean-Michel Gérard. Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique. Comptes Rendus. Physique, Volume 4 (2003) no. 6, pp. 701-713. doi : 10.1016/S1631-0705(03)00109-9. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00109-9/
[1] Quantum cryptography, Physics World, Volume 11 (1998), p. 41 (special issue on Quantum Information)
[2] Quantum cryptography, Rev. Mod. Phys., Volume 74 (2002), p. 145
[3] Experiment and the foundation of quantum physics, Rev. Mod. Phys., Volume 71 (1999), p. 288
[4] Les promesses de l'information quantique, La Recherche, Volume 327 (2000), p. 46
[5] Quantum information computation, Nature, Volume 404 (2000), p. 247
[6] The Physics of Quantum Information, Springer, Berlin, 2000
[7] Fast and user-friendly quantum key distribution, J. Mod. Opt., Volume 47 (2000), p. 517
[8] Limitations on practical quantum cryptography, Phys. Rev. Lett., Volume 85 (2000), p. 1330
[9] Long-distance entanglement-based quantum key distribution, Phys. Rev. A, Volume 63 (2001), p. 012309
[10] A single-photon turnstile device, Nature, Volume 397 (1999), p. 500
[11] Photon antibunching in the fluorescence of a single dye molecule trapped in a solid, Phys. Rev. Lett., Volume 69 (1992), p. 1516
[12] Single photons on demand from a single molecule at room temperature, Nature, Volume 407 (2000), p. 491
[13] Stable solid-state source of single photons, Phys. Rev. Lett., Volume 89 (2000), p. 290
[14] Single photon quantum cryptography, Phys. Rev. Lett., Volume 89 (2002), p. 187901
[15] Quantum correlations among photons from a single quantum dot at room temperature, Nature, Volume 406 (2000), p. 968
[16] Statistical aging and nonergodicity in the fluorescence of single nanocrystals, Phys. Rev. Lett., Volume 90 (2003), p. 120601
[17] A quantum dot single photon turnstile, Science, Volume 290 (2000), p. 2282
[18] Triggered single photons from a quantum dot, Phys. Rev. Lett., Volume 86 (2001), p. 1502
[19] Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities, Appl. Phys. Lett., Volume 79 (2001), p. 2865
[20] Electrically driven single photon source, Science, Volume 295 (2002), p. 102
[21] Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities, J. Lightwave Technology, Volume 17 (1999), p. 2089
[22] Quantum cascade of photons in semiconductor quantum dots, Phys. Rev. Lett., Volume 87 (2001), p. 183601
[23] Line narrowing in single semiconductor quantum dots: Toward the control of environment effects, Phys. Rev. B, Volume 66 (2002), p. (R)041306
[24] Fine structure of Biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots, Phys. Rev. Lett., Volume 82 (1999), p. 1780
[25] Solid state single photon sources: light collection strategies, Eur. Phys. J. D, Volume 18 (2002), p. 197
[26] Photonic bandgap structures, J. Opt. Soc. Am. B, Volume 10 (1993), p. 283
[27] Enhanced spontaneous emission for InAs quantum boxes in a monolithic optical microcavity, Phys. Rev. Lett., Volume 81 (1998), p. 1110
[28] Time-resolved probing of the Purcell effect for InAs quantum boxes in GaAs microdisks, Appl. Phys. Lett., Volume 78 (2001), p. 2828
[29] Photoluminescence of single quantum dots obtained by self-organized growth on GaAs, Phys. Rev. Lett., Volume 73 (1994), p. 716
[30] Quantum dots in photonic dots, Nano Lett., Volume 1 (2001), p. 309
[31] Emission of a single conjugated polymer chain isolated in its single crystal monomer matrix, Phys. Rev. Lett., Volume 87 (2001), p. 087401
[32] Indistinguishable photons from a single-photon device, Nature, Volume 419 (2002), p. 594
[33] Practical quantum cryptography based on two-photon interferometry, Phys. Rev. Lett., Volume 69 (1992), p. 1293
[34] Violation of Bell's inequality over km of optical fiber, Phys. Rev. Lett., Volume 73 (1994), p. 1923
[35] New high-intensity source of polarization-entangled photon pairs, Phys. Rev. Lett., Volume 75 (1995), p. 4337
[36] Experimental quantum teleportation, Nature, Volume 390 (1997), p. 575
[37] Violation of Bell inequalities by photons more than 10 km apart, Phys. Rev. Lett., Volume 81 (1998), p. 3563
[38] Violation of Bell's inequality under strict Einstein locality conditions, Phys. Rev. Lett., Volume 81 (1998), p. 5039
[39] Experimental test of quantum nonlocality in three-photon Greemberger–Horne–Zellinger entanglement, Nature, Volume 403 (2000), p. 515
[40] Quantum Electronics, Wiley, 1991
[41] Nonlinear photonic crystals, Phys. Rev. Lett., Volume 81 (1998), p. 4136
[42] Phase matching using an isotropic nonlinear optical material, Nature, Volume 391 (1998), p. 463
[43] Counterpropagating twin photons by parametric fluorescence, Phys. Rev. Lett., Volume 88 (2002), p. 043901
[44] Third order mode optically pumped semiconductor laser, Appl. Phys. Lett., Volume 80 (2002), p. 4690
[45] Parametric fluorescence in oxidized aluminium gallium arsenide waveguides, Appl. Phys. Lett., Volume 79 (2001), p. 3758
[46] V. Berger, Brevet, Laser à générations paramétriques, N∘ national 9912303
[47] Quasi-phase-matched second harmonic generation: tuning and tolerances, IEEE J. Quantum Electron., Volume 28 (1992), p. 2631
[48] Difference frequency generation of 8 μm radiation in orientation-patterned GaAs, Opt. Lett., Volume 27 (2002), p. 2091
[49] J.S. Tanzilli, Optique intégrée pour les communications quantiques, Thèse de l'Université de Nice, 2002
[50] G. Leo, Thèse de l'Université de Paris XI, 2001
[51] Birefringence evaluation of multimode multilayer AlGaAs/AlAs waveguides, Appl. Phys. Lett., Volume 78 (2001), p. 1472
Cité par Sources :
Commentaires - Politique