L'émergence des détecteurs infrarouge non refroidis a ouvert de nouvelles opportunités pour la détection infrarouge tant dans les applications civiles que militaires. Le développement de tels détecteurs doit répondre à des contraintes diverses dont la plus importante est d'utiliser un thermomètre performant et un processus d'intégration utilisant des techniques de la micro-électronique silicium. Le CEA/LETI a choisi dès les débuts du développement d'intégrer à l'aide de la technologie silicium un thermomètre résistif sur un circuit CMOS issu d'une filière commercialement disponible. Cette seule approche a un potentiel de coût de fabrication très réduit par rapport aux technologies concurrentes. La technologie a été transférée à la société Sofradir qui a ensuite externalisé cette activité dans sa filiale ULIS. Le CEA/LETI et ULIS travaillent maintenant à l'amélioration des performances de la filière pour permettre la réalisation de composants de faibles dimensions économiquement plus accessibles à de nombreuses applications. Nous présentons dans cet article une revue de l'état de l'art dans le monde ainsi que les nouveaux produits en cours de développement à ULIS.
The emergence of uncooled detectors has opened new opportunities for IR detection for both military and commercial applications. Development of such devices involves a lot of trade-offs between the different parameters that define the technological stack. These trade-offs explain the number of different architectures that are under worldwide development. The key factor is to find a high sensitivity and low noise thermometer material compatible with silicon technology in order to achieve high thermal isolation in the smallest area as possible. Ferroelectric thermometer based hybrid technology and electrical resistive thermometer based (microbolometer) technology are under development. LETI and ULIS have chosen from the very beginning to develop first a monolithic microbolometer technology fully compatible with commercially available CMOS technology and secondly amorphous silicon based thermometer. This silicon approach has the greatest potential for reducing infrared detector manufacturing cost. After the development of the technology, the transfer to industrial facilities has been performed in a short period of time and the production is now ramping up with ULIS team in new facilities. LETI and ULIS are now working to facilitate the IRFPA integration into equipment in order to address a very large market. Achievement of this goal needs the development of smart sensors with on-chip advanced functions and the decrease of manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the technology developed by CEA/LETI and its improvement for being able to designs 384×288 and 160×120 arrays with a pitch of 35 μm. Thermographic application needs high stability infrared detector with a precise determination of the amount of absorbed infrared flux. Hence, infrared detector with internal temperature stabilized shield has been developed and characterized. These results will be presented.
Keywords: Microbolometer, Uncooled IR focal plane array, Amorphous silicon, Vanadium oxide
Jean-Luc Tissot 1
@article{CRPHYS_2003__4_10_1083_0, author = {Jean-Luc Tissot}, title = {La d\'etection infrarouge avec les plans focaux non refroidis : \'etat de l'art}, journal = {Comptes Rendus. Physique}, pages = {1083--1088}, publisher = {Elsevier}, volume = {4}, number = {10}, year = {2003}, doi = {10.1016/j.crhy.2003.10.015}, language = {fr}, }
Jean-Luc Tissot. La détection infrarouge avec les plans focaux non refroidis : état de l'art. Comptes Rendus. Physique, Volume 4 (2003) no. 10, pp. 1083-1088. doi : 10.1016/j.crhy.2003.10.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.10.015/
[1] High sensitivity 25 μm microbolometer FPAs, Infrared Detectors and Focal Plane Arrays VII, Orlando, FL, USA, Proc. SPIE, vol. 4721, 2002, pp. 99-110
[2] DRS U6000 640×480 Vox uncooled IR focal plane, Infrared Detectors and Focal Plane Arrays VII, Orlando, FL, USA, Proc. SPIE, vol. 4721, 2002, pp. 48-55
[3] Recent improvements and developments in uncooled systems at Bae SYSTEMS North America, Infrared Detectors and Focal Plane Arrays VII, Orlando, FL, USA, Proc. SPIE, vol. 4721, 2002, pp. 83-90
[4] Thin-film ferroelectrics: breakthrough, Infrared Detectors and Focal Plane Arrays VII, Orlando, FL, USA, Proc. SPIE, vol. 4721, 2002, pp. 91-98
[5] M.A. Todd, P.P. Donohue, R. Watton, D.J. Williams, C.J. Anthony, M.G. Blamire, High performance ferroelectric and magnetoresistive materials for next-generation thermal detector arrays, Infrared Detectors and Focal Plane Arrays VII, Proc. SPIE, Vol. 4721, 2002, in press
[6] Optimization of design and technology for uncooled poly-SiGe icrobolometer arrays, Infrared Detectors and Focal Plane Arrays VII, Orlando, FL, USA, Proc. SPIE, vol. 4721, 2002, pp. 122-133
[7] Commercial and custom 160×120, 251×1 and 512×3 pixel bolometric FPAs, Infrared Detectors and Focal Plane Arrays VII, Orlando, FL, USA, Proc. SPIE, vol. 4721, 2002, pp. 64-74
[8] et al. A high fill-factor IR bolometer using multi-level electrothermal structures, IEEE Trans. Electron Devices, Volume 46 (1999) no. 7, pp. 1489-1491
[9] Amorphous silicon based uncooled microbolometer IRFPA, Infrared Technology and Application XXV, Orlando, FL, USA, Proc. SPIE, vol. 46, 1999
[10] J.J. Yon, L. Biancardini, E. Mottin, J.-L. Tissot, L. Letellier, Infrared microbolometer sensors and their application in automotive safety, in: Proceeding of AMAA 2003 conference, in press
[11] Enhanced amorphous silicon technology for 320×240 microbolometer arrays with a pitch of 35 μm, Infrared Detectors and Focal Plane Arrays VI, SPIE, vol. 4369, 2001
Cité par Sources :
Commentaires - Politique