Comptes Rendus
Infrared photodetection with semiconductor self-assembled quantum dots
[Photodétection infrarouge avec les boı̂tes quantiques semi-conductrices auto-assemblées]
Comptes Rendus. Physique, ir vision: from chip to image, Volume 4 (2003) no. 10, pp. 1133-1154.

Les boı̂tes quantiques semi-conductrices auto-assemblées sont des candidates pour le développement d'une nouvelle classe de photodétecteurs quantiques et de matrices fonctionnant dans le moyen infrarouge. Dans cet article, nous décrivons les propriétés des transitions intersousniveaux des boı̂tes quantiques InAs/GaAs. La structure électronique qui tient compte du champ de contrainte dans les boı̂tes est obtenue dans un formalisme k.p à 8 bandes en tenant compte du confinement tridimensionnel. L'absorption intersousniveaux dans le moyen infrarouge de boı̂tes quantiques dopées n est décrite. Nous montrons que la dynamique des porteurs peut être comprise dans le cadre d'une théorie de polarons qui résulte du régime de couplage fort pour l'interaction électron–phonon dans les boı̂tes. Le principe de fonctionnement de photodétecteurs moyen infrarouge à boı̂tes quantiques verticaux et latéraux est décrit et discuté par référence à celui des photodétecteurs à puits quantiques. Les performances de différents types de détecteurs développés à ce jour sont présentées et nous donnons des directions pour la réalisation de photodétecteurs moyen infrarouge à boı̂tes quantiques performants.

Semiconductor self-assembled quantum dots are potential candidates to develop a new class of midinfrared quantum photodetectors and focal plane arrays. In this article, we present the specific midinfrared properties of InAs/GaAs quantum dots associated with the intersublevel transitions. The electronic structure, which accounts for the strain field in the islands, is obtained within the framework of a three-dimensional 8 band k.p formalism. The midinfrared intersublevel absorption in n-doped quantum dots is described. We show that the carrier dynamics can be understood in terms of polarons which result from the strong coupling regime for the electron–phonon interaction in the dots. The principle of operation of vertical and lateral quantum dot infrared photodetectors is described and discussed by comparison with quantum well infrared photodetectors. We review the performances of different type of detectors developed to date and finally give some orientation to realize high performance quantum dot infrared photodetectors.

Publié le :
DOI : 10.1016/j.crhy.2003.10.020

Philippe Boucaud 1 ; Sébastien Sauvage 1

1 Institut d'électronique fondamentale, unité mixte de recherche CNRS 8622, bâtiment 220, Université Paris-Sud, 91405 Orsay, France
@article{CRPHYS_2003__4_10_1133_0,
     author = {Philippe Boucaud and S\'ebastien Sauvage},
     title = {Infrared photodetection with semiconductor self-assembled quantum dots},
     journal = {Comptes Rendus. Physique},
     pages = {1133--1154},
     publisher = {Elsevier},
     volume = {4},
     number = {10},
     year = {2003},
     doi = {10.1016/j.crhy.2003.10.020},
     language = {en},
}
TY  - JOUR
AU  - Philippe Boucaud
AU  - Sébastien Sauvage
TI  - Infrared photodetection with semiconductor self-assembled quantum dots
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 1133
EP  - 1154
VL  - 4
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2003.10.020
LA  - en
ID  - CRPHYS_2003__4_10_1133_0
ER  - 
%0 Journal Article
%A Philippe Boucaud
%A Sébastien Sauvage
%T Infrared photodetection with semiconductor self-assembled quantum dots
%J Comptes Rendus. Physique
%D 2003
%P 1133-1154
%V 4
%N 10
%I Elsevier
%R 10.1016/j.crhy.2003.10.020
%G en
%F CRPHYS_2003__4_10_1133_0
Philippe Boucaud; Sébastien Sauvage. Infrared photodetection with semiconductor self-assembled quantum dots. Comptes Rendus. Physique, ir vision: from chip to image, Volume 4 (2003) no. 10, pp. 1133-1154. doi : 10.1016/j.crhy.2003.10.020. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.10.020/

[1] L.C. West; S.J. Eglash Appl. Phys. Lett., 46 (1986), p. 1156

[2] B.F. Levine J. Appl. Phys., 74 (1993), p. R1

[3] U. Bockelmann; G. Bastard Phys. Rev. B, 42 (1990), p. 8947

[4] S. Tarucha; D.G. Austing; T. Honda; R.J. Van der Hage; L.P. Kouwenhoven Phys. Rev. Lett., 77 (1997), p. 3613

[5] R.H. Blick; R.J. Haug; J. Weis; D. Pfannkuche; K.V. Klitzing; K. Eberl Phys. Rev. B, 53 (1996), p. 7899

[6] Ch. Sikorski; U. Merkt Phys. Rev. Lett., 62 (1989), p. 2164

[7] T. Demel; D. Heitmann; P. Grambow; K. Ploog Phys. Rev. Lett., 64 (1990), p. 788

[8] I.N. Stranski; L. Krastanow Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. K1 Abt. 2B Chemie, 146 (1937), p. 797

[9] L. Goldstein; F. Glas; J.Y. Marzin; M.N. Charasse; G. Le Roux Appl. Phys. Lett., 47 (1985), p. 1099

[10] Y.W. Mo; D.E. Savage; B.S. Swartzentruber; M.G. Lagally Phys. Rev. Lett., 65 (1990), p. 1020

[11] J.M. Gérard; J.Y. Marzin; G. Zimmermann; A. Ponchet; O. Cabrol; D. Barrier; B. Jusserand; B. Sermage Solid State Electron., 40 (1996), p. 807

[12] M. Grundmann; O. Stier; D. Bimberg Phys. Rev. B, 52 (1995), p. 11969

[13] H. Lee; R. Lowe-Webb; W. Yang; P.C. Sercel Appl. Phys. Lett., 72 (1998), p. 812

[14] J.-Y. Marzin; G. Bastard Solid State Commun., 92 (1994), p. 437

[15] Ph. Lelong; G. Bastard Solid State Commun., 98 (1996), p. 819

[16] L.R.C. Fonseca; J.L. Jimenez; J.P. Leburton; R.M. Martin Phys. Rev. B, 57 (1998), p. 4017

[17] A. Wojs; P. Hawrylak; S. Fafard; L. Jacak Phys. Rev. B, 54 (1996), p. 5604

[18] S. Sauvage; P. Boucaud; J.-M. Gérard; V. Thierry-Mieg Phys. Rev. B, 58 (1998), p. 10562

[19] M.A. Cusack; P.R. Briddon; M. Jaros Phys. Rev. B, 54 (1996), p. R2300

[20] M.A. Cusack; P.R. Briddon; M. Jaros Phys. Rev. B, 56 (1997), p. 4047

[21] H. Jiang; J. Singh Appl. Phys. Lett., 71 (1997), p. 3239

[22] H. Jiang; J. Singh Phys. Rev. B, 56 (1997), p. 4696

[23] C. Pryor Phys. Rev. B, 57 (1998), p. 7190

[24] W. Sheng; J.-P. Leburton Appl. Phys. Lett., 78 (2002), p. 1258

[25] O. Stier; M. Grundmann; D. Bimberg Phys. Rev. B, 59 (1999) no. 8, p. 5688

[26] F. Bras; P. Boucaud; S. Sauvage; G. Fishman; J.-M. Gérard Appl. Phys. Lett., 80 (2002), p. 4620

[27] S. Sauvage; P. Boucaud; R.P.S.M. Lobo; F. Bras; G. Fishman; R. Prazeres; F. Glotin; J.-M. Ortéga; J.-M. Gérard Phys. Rev. Lett., 88 (2002), p. 177402

[28] J. Kim; L.-W. Wang; A. Zunger Phys. Rev. B, 57 (1998), p. R9408

[29] S. Sauvage; P. Boucaud; T. Brunhes; A. Lemaı̂tre; J.-M. Gérard Phys. Status Solidi B, 224 (2001), p. 579

[30] H. Drexler; D. Leonard; W. Hansen; J.P. Kotthaus; P.M. Petroff Phys. Rev. Lett., 73 (1994), p. 2252

[31] S. Sauvage; P. Boucaud; J.-M. Gérard; V. Thierry-Mieg J. Appl. Phys., 84 (1998), p. 4356

[32] S. Sauvage; P. Boucaud; T. Brunhes; A. Lemaı̂tre; J.M. Gérard Phys. Rev. B, 60 (1999), p. 15589

[33] S. Sauvage; P. Boucaud; T. Brunhes; V. Immer; E. Finkman; J.-M. Gérard Appl. Phys. Lett., 78 (2001), p. 2327

[34] S. Sauvage; P. Boucaud; F. Glotin; R. Prazeres; J.-M. Ortega; A. Lemaı̂tre; J.-M. Gérard; V. Thierry-Mieg Phys. Rev. B, 59 (1999), p. 9830

[35] T. Brunhes; P. Boucaud; S. Sauvage; F. Glotin; R. Prazeres; J.-M. Ortega; A. Lemaı̂tre; J.-M. Gérard Appl. Phys. Lett., 75 (1999), p. 835

[36] T. Brunhes; P. Boucaud; S. Sauvage; A. Lemaı̂tre; J.-M. Gérard; F. Glotin; R. Prazeres; J.-M. Ortega Phys. Rev. B, 61 (2000), p. 5562

[37] S. Sauvage; T. Brunhes; P. Boucaud; A. Lemaı̂tre; J.-M. Gérard; F. Glotin; R. Prazeres; J.-M. Ortega Phys. Status Solidi B, 224 (2001), p. 595

[38] S. Sauvage; P. Boucaud; T. Brunhes; F. Glotin; R. Prazeres; J.-M. Ortega; J.-M. Gérard Phys. Rev. B, 63 (2001), p. 113312

[39] D. Leonard; M. Krishnamurthy; C.M. Reaves; S.P. Denbaars; P.M. Petroff Appl. Phys. Lett., 63 (1993), p. 3203

[40] M. Grundmann; N.N. Ledentsov; R. Heitz; L. Eckey; J. Christen; J. Böhrer; D. Bimberg; S.S. Ruvimov; P. Werner; U. Richter; J. Heydenreich; V.M. Ustinov; A.Yu. Egorov; A.E. Zhukov; P.S. Kopev; Zh.I. Alferov Phys. Status Solidi, 188 (1995), p. 249

[41] Y. Hasegawa; H. Kiyama; Q.K. Xue; T. Sakurai Appl. Phys. Lett., 72 (1998), p. 2265

[42] B. Legrand; B. Grandidier; J.P. Nys; D. Stiévenard; J.M. Gérard; V. Thierry-Mieg Appl. Phys. Lett., 73 (1998), p. 96

[43] P.N. Keating Phys. Rev., 145 (1966), p. 637

[44] G. Fishman Energie et fonction d'onde des semi-conducteurs, Les editions de physique, 1988

[45] G. Bastard Wave Mechanics Applied to Semiconductor Heterostructures, Les editions de physique, 1992

[46] G.L.G. Sleijpen; H.A. van der Vorst SIAM J. Matrix Anal. Appl., 17 (1996), p. 401

[47] H.C. Liu; M. Buchanan; Z.R. Wasilewski Appl. Phys. Lett., 72 (1998), p. 1682

[48] S. Sauvage, Propriétés infrarouges des boı̂tes quantiques semi-conductrices InAs/GaAs, Thèse de l'université Paris-XI, Mars 1999

[49] H. Benisty; C.M. Sottomayor-Torrès; C. Weisbuch Phys. Rev. B, 44 (1991), p. 10945

[50] T. Inoshita; H. Sakaki Phys. Rev. B, 46 (1992), p. 7260

[51] U. Bockelmann; T. Egeler Phys. Rev. B, 46 (1992), p. 15574

[52] T. Inoshita; H. Sakaki Phys. Rev. B, 56 (1997), p. R4355

[53] O. Verzelen; R. Ferreira; G. Bastard Phys. Rev. B, 62 (2000), p. R4809

[54] S. Hameau; J.N. Isaia; Y. Guldner; E. Deleporte; O. Verzelen; R. Ferreira; G. Bastard; J. Zeman; J.M. Gérard Phys. Rev. Lett., 83 (1999), p. 4152

[55] D. Von der Linde; J. Khul; H. Klingerberg Phys. Rev. Lett., 44 (1980), p. 1505

[56] X.-Q. Li; Y. Arakawa Phys. Rev. B, 57 (1998) no. 12, p. 285

[57] X.-Q. Li; H. Nakayama; Y. Arakawa Phys. Rev. B, 59 (1999), p. 5069

[58] Ph. Lelong; S.H. Lin Appl. Phys. Lett., 81 (2002), p. 1002

[59] S. Sauvage; P. Boucaud; F. Glotin; R. Prazeres; J.-M. Ortega; A. Lemaı̂tre; J.-M. Gérard; V. Thierry-Mieg Appl. Phys. Lett., 73 (1998), p. 3818

[60] Properties of Aluminium Gallium Arsenide (S. Hadachi, ed.), INSPEC, London, 1993

[61] O. Verzelen; R. Ferreira; G. Bastard Phys. Rev. B, 64 (2001), p. 075315

[62] O. Verzelen; R. Ferreira; G. Bastard Phys. Rev. Lett., 88 (2002), p. 146803

[63] O. Verzelen; G. Bastard; R. Ferreira Phys. Rev. B, 66 (2002), p. 081308(R)

[64] F. Vallée; F. Bogani Phys. Rev. B, 43 (1991), p. 12049

[65] M. Ershov; H.C. Liu J. Appl. Phys., 86 (1999), p. 6580

[66] W.A. Beck Appl. Phys. Lett., 63 (1993), p. 3589

[67] B.F. Levine Appl. Phys. Lett., 74 (1999), p. 892

[68] L. Thibaudeau; P. Bois; J.Y. Duboz J. Appl. Phys., 79 (1996), p. 446

[69] C. Weisbuch; B. Vinter Quantum Semiconductor Structures, Academic Press, 1991

[70] V. Ryzhii; I. Khmyrova; V. Mitin; M. Stroscio; M. Willander Appl. Phys. Lett., 78 (2001), p. 3523

[71] B. Kochman; A.D. Stiff-Roberts; S. Chakrabarti; J.D. Phillips; S. Krisna; J. Singh; P. Bhattacharya IEEE J. Quantum Electron., 39 (2003), p. 459

[72] J.-Y. Duboz; H.C. Liu; Z.R. Wasilewski; M. Byloss; R. Dudek J. Appl. Phys., 93 (2003), p. 1320

[73] A.D. Stiff; S. Krishna; P. Bhattacharya; S. Kennerly Appl. Phys. Lett., 79 (2001), p. 421

[74] V. Ryzhii J. Appl. Phys., 89 (2001), p. 5117

[75] L. Chu; A. Zrenner; G. Böhm; G. Abstreiter Appl. Phys. Lett., 76 (2000), p. 1944

[76] S.-W. Lee; K. Hirakawa; Y. Shimada Appl. Phys. Lett., 75 (1999), p. 1428

[77] L. Chu; A. Zrenner; M. Bichler; G. Abstreiter Appl. Phys. Lett., 79 (2001), p. 2249

[78] K.W. Berryman; S.A. Lyon; M. Segev Appl. Phys. Lett., 70 (1997), p. 1861

[79] J. Phillips; K. Kamath; P. Bhattacharrya Appl. Phys. Lett., 72 (1998), p. 2020

[80] S. Maimon; E. Finkman; G. Bahir; S.E. Schacham; J.M. Garcia; P.M. Petroff Appl. Phys. Lett., 73 (1998), p. 2003

[81] S. Kim; H. Mohseni; M. Erdtmann; E. Michel; C. Jelen; M. Razeghi Appl. Phys. Lett., 73 (1998), p. 963

[82] D. Pan; E. Towe; S. Kennerly Appl. Phys. Lett., 73 (1998), p. 1937

[83] D. Pan; E. Towe; S. Kennerly Appl. Phys. Lett., 75 (1999), p. 2719

[84] H.C. Liu; M. Gao; J. McCaffrey; Z.R. Wasilewski; S. Fafard Appl. Phys. Lett., 78 (2001), p. 79

[85] A.D. Stiff; S. Krishna; P. Bhattacharya; S.W. Kennerly IEEE J. Quantum Electron., 37 (2001), p. 1412

[86] A.D. Stiff; S. Krishna; P. Bhattacharya; S. Kennerly Appl. Phys. Lett., 79 (2001), p. 421

[87] Z. Ye; J.C. Campbell; Z. Chen; E. Kim; A. Madhukar IEEE J. Quantum Electron., 38 (2002), p. 1234

[88] Z. Ye; J.C. Campbell; Z. Chen; E. Kim; A. Madhukar J. Appl. Phys., 92 (2002), p. 4141

[89] Z. Chen; E. Kim; A. Madhukar Appl. Phys. Lett., 80 (2002), p. 2490

[90] E.T. Kim; Z. Chen; A. Madhukar Appl. Phys. Lett., 79 (2001), p. 3341

[91] L.P. Rokhinson; D.C. Tsui; J.L. Benton; Y.-H. Xie Appl. Phys. Lett., 75 (1999), p. 2413

[92] N. Rappaport; E. Finkman; T. Brunhes; P. Boucaud; S. Sauvage; N. Yam; V. Le Thanh; D. Bouchier Appl. Phys. Lett., 77 (2000), p. 3224

  • Adrienne D. Stiff-Roberts Quantum dot infrared photodetectors, Comprehensive Semiconductor Science and Technology (2025), p. 203 | DOI:10.1016/b978-0-323-96027-4.00005-x
  • Abhinandan Patra; Chandra Sekhar Rout Self-Assembled Quantum Dot Photodetector: A Pathbreaker in the Field of Optoelectronics, Quantum Dot Photodetectors, Volume 30 (2021), p. 289 | DOI:10.1007/978-3-030-74270-6_7
  • Siyi Zhuang; Wei Zhang; Yang Xinning; Lili Miao; Zhenwu Shi; Changsi Peng; Yuji Sano; Minghui Hong; Rongshi Xiao; Jianhua Yao, Advanced Laser Processing and Manufacturing IV (2020), p. 25 | DOI:10.1117/12.2574968
  • Clayton Fowler; Jun Oh Kim; Sang Jun Lee; Augustine Urbas; Zahyun Ku; Jiangfeng Zhou Strong Responsivity Enhancement of Quantum Dot‐in‐a‐Well Infrared Photodetectors Using Plasmonic Structures, Advanced Theory and Simulations, Volume 2 (2019) no. 2 | DOI:10.1002/adts.201800143
  • Mohammadreza Shahzadeh; Mohammad Sabaeian Numerical analysis of optical properties of oblate semi-spheroid-shaped quantum dots coupled to wetting layer, Journal of the Optical Society of America B, Volume 32 (2015) no. 6, p. 1097 | DOI:10.1364/josab.32.001097
  • Konstantinos Papatryfonos; Guillemin Rodary; Christophe David; François Lelarge; Abderrahim Ramdane; Jean-Christophe Girard One-Dimensional Nature of InAs/InP Quantum Dashes Revealed by Scanning Tunneling Spectroscopy, Nano Letters, Volume 15 (2015) no. 7, p. 4488 | DOI:10.1021/acs.nanolett.5b00963
  • Mohammad Sabaeian; Mohammadreza Shahzadeh GaAs pyramidal quantum dot coupled to wetting layer in an AlGaAs matrix: A strain-free system, Physica E: Low-dimensional Systems and Nanostructures, Volume 68 (2015), p. 215 | DOI:10.1016/j.physe.2015.01.004
  • Mohammadreza Shahzadeh; Mohammad Sabaeian A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer, AIP Advances, Volume 4 (2014) no. 6 | DOI:10.1063/1.4885135
  • Zhou Yan-Ping; Li Fa-Jun; Che Chi; Tan Li-Ying; Ran Qi-Wen; Yu Si-Yuan; Ma Jing Application of quantum dot infrared photodetectors in space photoelectric systems, Acta Physica Sinica, Volume 63 (2014) no. 14, p. 148501 | DOI:10.7498/aps.63.148501
  • Mohammad Sabaeian; Mohammadreza Shahzadeh Investigation of in-plane- and z-polarized intersubband transitions in pyramid-shaped InAs/GaAs quantum dots coupled to wetting layer: Size and shape matter, Journal of Applied Physics, Volume 116 (2014) no. 4 | DOI:10.1063/1.4891252
  • Eoin P. O’Reilly; Oliver Marquardt; Stefan Schulz; Aleksey D. Andreev Plane-Wave Approaches to the Electronic Structure of Semiconductor Nanostructures, Multi-Band Effective Mass Approximations, Volume 94 (2014), p. 155 | DOI:10.1007/978-3-319-01427-2_5
  • F. Bendahma; S. Bentata; R. Djelti; Z. Aziz Effect of the aluminium concentration on the resonant tunnelling time and the laser wavelength of random trimer barrier AlxGa1−xAs superlattices, Physica B: Condensed Matter, Volume 449 (2014), p. 150 | DOI:10.1016/j.physb.2014.05.029
  • Mohammadreza Shahzadeh; Mohammad Sabaeian Wetting layer-assisted modification of in-plane-polarized transitions in strain-free GaAs/AlGaAs quantum dots, Superlattices and Microstructures, Volume 75 (2014), p. 514 | DOI:10.1016/j.spmi.2014.08.008
  • Alireza Kazemi; Marziyeh Zamiri; Jun Oh Kim; Ted Schuler‐Sandy; Sanjay Krishna Colloidal and Epitaxial Quantum Dot Infrared Photodetectors: Growth, Performance, and Comparison, Wiley Encyclopedia of Electrical and Electronics Engineering (2014), p. 1 | DOI:10.1002/047134608x.w8225
  • Farid Bensebaa Optoelectronics, Nanoparticle Technologies - From Lab to Market, Volume 19 (2013), p. 429 | DOI:10.1016/b978-0-12-369550-5.00007-0
  • Zahyun Ku; Woo-Yong Jang; Jiangfeng Zhou; Jun Oh Kim; Ajit V. Barve; Sinhara Silva; Sanjay Krishna; S. R. J. Brueck; Robert Nelson; Augustine Urbas; Sangwoo Kang; Sang Jun Lee nAnalysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors, Optics Express, Volume 21 (2013) no. 4, p. 4709 | DOI:10.1364/oe.21.004709
  • Yamina Sefir; Zoubir Aziz; Redouan Djelti; Bouabdellah Bouadjemi; Samir Bentata Achievement of tailored laser frequencies by fine-tuning the structural parameters of Fibonacci’s in AlxGa1−xAs/GaAs superlattices, Superlattices and Microstructures, Volume 62 (2013), p. 233 | DOI:10.1016/j.spmi.2013.07.024
  • G. Cerulo; L. Nevou; V. Liverini; F. Castellano; J. Faist Tuning the dynamic properties of electrons between a quantum well and quantum dots, Journal of Applied Physics, Volume 112 (2012) no. 4 | DOI:10.1063/1.4746789
  • Rainer Jacob; Stephan Winnerl; Markus Fehrenbacher; Jayeeta Bhattacharyya; Harald Schneider; Marc Tobias Wenzel; Hans-Georg von Ribbeck; Lukas M. Eng; Paola Atkinson; Oliver G. Schmidt; Manfred Helm Intersublevel Spectroscopy on Single InAs-Quantum Dots by Terahertz Near-Field Microscopy, Nano Letters, Volume 12 (2012) no. 8, p. 4336 | DOI:10.1021/nl302078w
  • Muhammad Usman Atomistic theoretical study of electronic and polarization properties of single and vertically stacked elliptical InAs quantum dots, Physical Review B, Volume 86 (2012) no. 15 | DOI:10.1103/physrevb.86.155444
  • Ajit V Barve; Sanjay Krishna Quantum Dot Infrared Photodetectors, Advances in Infrared Photodetectors, Volume 84 (2011), p. 153 | DOI:10.1016/b978-0-12-381337-4.00003-6
  • A.D. Stiff-Roberts Quantum-Dot Infrared Photodetectors, Comprehensive Semiconductor Science and Technology (2011), p. 452 | DOI:10.1016/b978-0-44-453153-7.00036-5
  • Vladimir Iancu; Mihai Razvan Mitroi; Ana-Maria Lepadatu; Ionel Stavarache; Magdalena Lidia Ciurea Calculation of the quantum efficiency for the absorption on confinement levels in quantum dots, Journal of Nanoparticle Research, Volume 13 (2011) no. 4, p. 1605 | DOI:10.1007/s11051-010-9913-6
  • Ali Rostami; Hassan Rasooli; Hamed Baghban Terahertz and Infrared Quantum Photodetectors, Terahertz Technology, Volume 77 (2011), p. 91 | DOI:10.1007/978-3-642-15793-6_2
  • Mitsuhiro Nagashima; Michiya Kibe; Minoru Doshida; Yasuhito Uchiyama; Yusuke Matsukura; Hironori Nishino Photodetection around 10 μm wavelength using s-p transitions in InAs/AlAs/AlGaAs self-assembled quantum dots, Journal of Applied Physics, Volume 107 (2010) no. 5 | DOI:10.1063/1.3327002
  • J. Houel; S. Sauvage; A. Lemaître; P. Boucaud Interference effects on bound-to-continuum quantum dot absorption, Journal of Applied Physics, Volume 107 (2010) no. 8 | DOI:10.1063/1.3385313
  • J P Martínez-Pastor; G Muñoz-Matutano; B Alén; J Canet-Ferrer; D Fuster; G Trevisi; L Seravalli; P Frigeri; S Franchi Thermal activated carrier transfer between InAs quantum dots in very low density samples, Journal of Physics: Conference Series, Volume 210 (2010), p. 012015 | DOI:10.1088/1742-6596/210/1/012015
  • A.V. Barve; S.J. Lee; S.K. Noh; S. Krishna Review of current progress in quantum dot infrared photodetectors, Laser Photonics Reviews, Volume 4 (2010) no. 6, p. 738 | DOI:10.1002/lpor.200900031
  • S. Dalessi; M.-A. Dupertuis Maximal symmetrization and reduction of fields: Application to wave functions in solid-state nanostructures, Physical Review B, Volume 81 (2010) no. 12 | DOI:10.1103/physrevb.81.125106
  • Anshu Pandey; Philippe Guyot-Sionnest Hot Electron Extraction From Colloidal Quantum Dots, The Journal of Physical Chemistry Letters, Volume 1 (2010) no. 1, p. 45 | DOI:10.1021/jz900022z
  • Shiang-Feng Tang; Hui-Huang Hsieh; Hsing-Yuan Tu; Teng-Hua You; Shih-Yen Lin; Li-Chun Wang; Cheng-Der Chiang Investigations for InAs/GaAs multilayered quantum-dot structure treated by high energy proton irradiation, Thin Solid Films, Volume 518 (2010) no. 24, p. 7425 | DOI:10.1016/j.tsf.2010.05.009
  • David Z.-Y. Ting; Sumith V. Bandara; Sarath D. Gunapala; Jason M. Mumolo; Sam A. Keo; Cory J. Hill; John K. Liu; Edward R. Blazejewski; Sir B. Rafol; Yia-Chung Chang Submonolayer quantum dot infrared photodetector, Applied Physics Letters, Volume 94 (2009) no. 11 | DOI:10.1063/1.3095812
  • E. Homeyer; J. Houel; X. Checoury; F. Delgehier; S. Sauvage; P. Boucaud; R. Braive; L. Le Gratiet; L. Leroy; A. Miard; A. Lemaître; I. Sagnes Resonant coupling of quantum dot intersublevel transitions with midinfrared photonic crystal modes, Applied Physics Letters, Volume 95 (2009) no. 4 | DOI:10.1063/1.3189812
  • P. Martyniuk; A. Rogalski Insight into performance of quantum dot infrared photodetectors, Bulletin of the Polish Academy of Sciences: Technical Sciences, Volume 57 (2009) no. 1 | DOI:10.2478/v10175-010-0111-6
  • T. GEBHARD; K. UNTERRAINER; D. ALVARENGA; P. S. S. GUIMARAES; J. M. VILLAS-BOAS; M. P. PIRES; G. S. VIEIRA; P. L. SOUZA INTRABAND AUGER EFFECT IN QUANTUM DOT STRUCTURES, International Journal of Modern Physics B, Volume 23 (2009) no. 12n13, p. 2872 | DOI:10.1142/s0217979209062487
  • A. Rogalski; J. Antoszewski; L. Faraone Third-generation infrared photodetector arrays, Journal of Applied Physics, Volume 105 (2009) no. 9 | DOI:10.1063/1.3099572
  • R. Nedzinskas; B. Čechavičius; J. Kavaliauskas; V. Karpus; D. Seliuta; V. Tamošiūnas; G. Valušis; G. Fasching; K. Unterrainer; G. Strasser Modulated reflectance study of InAs quantum dot stacks embedded in GaAs/AlAs superlattice, Journal of Applied Physics, Volume 106 (2009) no. 6 | DOI:10.1063/1.3212980
  • A. Mir; V. Ahmadi Design and analysis of a new structure of InAs/GaAs QDIP for 8–12 μm infrared windows with low dark current, Journal of Modern Optics, Volume 56 (2009) no. 15, p. 1704 | DOI:10.1080/09500340903289144
  • T Gebhard; D Alvarenga; P L Souza; P S S Guimarães; K Unterrainer; M P Pires; G S Vieira; J M Villas Boas Intraband Auger effect in InAs/InGaAlAs/InP quantum dot structures, Journal of Physics: Conference Series, Volume 167 (2009), p. 012001 | DOI:10.1088/1742-6596/167/1/012001
  • H. Rasooli Saghai; N. Sadoogi; A. Rostami; H. Baghban Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD), Optics Communications, Volume 282 (2009) no. 17, p. 3499 | DOI:10.1016/j.optcom.2009.05.064
  • Julien Houel; Estelle Homeyer; Xavier Checoury; Stephane Laurent; Guy Fishman; Sebastien Sauvage; Philippe Boucaud; Stephane Guilet; Remi Braive; Audrey Miard; Aristide Lemaitre; Isabelle Sagnes Two‐dimensional photonic crystals for mid‐infrared quantum dot intersublevel emission, physica status solidi (b), Volume 246 (2009) no. 4, p. 816 | DOI:10.1002/pssb.200880588
  • T. Gebhard; D. Alvarenga; P. L. Souza; P. S. S. Guimarães; K. Unterrainer; M. P. Pires; G. S. Vieira; J. M. Villas-Boas Intraband Auger effect in InAs∕InGaAlAs∕InP quantum dot structures, Applied Physics Letters, Volume 93 (2008) no. 5 | DOI:10.1063/1.2965804
  • A. Rogalski New material systems for third generation infrared photodetectors, Opto-Electronics Review, Volume 16 (2008) no. 4 | DOI:10.2478/s11772-008-0047-7
  • Sucismita Chutia; A. K. Bhattacharjee Electronic structure of Mn-doped III-V semiconductor quantum dots, Physical Review B, Volume 78 (2008) no. 19 | DOI:10.1103/physrevb.78.195311
  • G. Jolley; L. Fu; H. H. Tan; C. Jagadish Influence of quantum well and barrier composition on the spectral behavior of InGaAs quantum dots-in-a-well infrared photodetectors, Applied Physics Letters, Volume 91 (2007) no. 17 | DOI:10.1063/1.2802559
  • Sarath D. Gunapala; Sumith V. Bandara; Cory J. Hill; David Z. Ting; John K. Liu; Sir B. Rafol; Edward R. Blazejewski; Jason M. Mumolo; Sam A. Keo; Sanjay Krishna; Y.-C. Chang; Craig A. Shott 640×512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array, IEEE Journal of Quantum Electronics, Volume 43 (2007) no. 3, p. 230 | DOI:10.1109/jqe.2006.889645
  • D.Z.-Y. Ting; Y.-C. Chang; S.V. Bandara; C.J. Hill; S.D. Gunapala Band structure and impurity effects on optical properties of quantum well and quantum dot infrared photodetectors, Infrared Physics Technology, Volume 50 (2007) no. 2-3, p. 136 | DOI:10.1016/j.infrared.2006.10.031
  • Andrei Schliwa; Momme Winkelnkemper; Dieter Bimberg Impact of size, shape, and composition on piezoelectric effects and electronic properties ofIn(Ga)As∕GaAsquantum dots, Physical Review B, Volume 76 (2007) no. 20 | DOI:10.1103/physrevb.76.205324
  • Julien Houel; Sébastien Sauvage; Philippe Boucaud; Alexandre Dazzi; Rui Prazeres; François Glotin; Jean-Michel Ortéga; Audrey Miard; Aristide Lemaître Ultraweak-Absorption Microscopy of a Single Semiconductor Quantum Dot in the Midinfrared Range, Physical Review Letters, Volume 99 (2007) no. 21 | DOI:10.1103/physrevlett.99.217404
  • S. Sauvage; P. Boucaud Intersublevel polaron laser with InAs∕GaAs self-assembled quantum dots, Applied Physics Letters, Volume 88 (2006) no. 6 | DOI:10.1063/1.2169919
  • Guan-jie Zhang; Yong-chun Shu; Jiang-hong Yao; Qiang Shu; Hao-liang Deng; Guo-zhi Jia; Zhan-guo Wang Characteristics and developments of quantum-dot infrared photodetectors, Frontiers of Physics in China, Volume 1 (2006) no. 3, p. 334 | DOI:10.1007/s11467-006-0030-z
  • S. Sauvage; P. Boucaud; F. Bras; G. Fishman; J.‐M. Ortéga; J.‐M. Gérard; G. Patriarche; A. Lemaître Towards a mid‐infrared polaron laser using InAs/GaAs self‐assembled quantum dots, physica status solidi (b), Volume 243 (2006) no. 15, p. 3895 | DOI:10.1002/pssb.200671517
  • C. Kammerer; S. Sauvage; G. Fishman; P. Boucaud; G. Patriarche; A. Lemaître Mid-infrared intersublevel absorption of vertically electronically coupled InAs quantum dots, Applied Physics Letters, Volume 87 (2005) no. 17 | DOI:10.1063/1.2117621
  • Chalongrat Daengngam; Teparksorn Pengpan Computer simulation of the electron energy levels in a tetrahedral-shaped quantum dot, European Journal of Physics, Volume 26 (2005) no. 6, p. 1139 | DOI:10.1088/0143-0807/26/6/022
  • Dj. Veljković; M. Tadić; F.M. Peeters Intersublevel Absorption in Stacked n-Type Doped Self-Assembled Quantum Dots, Materials Science Forum, Volume 494 (2005), p. 37 | DOI:10.4028/www.scientific.net/msf.494.37
  • M. Tadić; F. M. Peeters Intersublevel magnetoabsorption in the valence band ofp-typeInAs∕GaAsandGe∕Siself-assembled quantum dots, Physical Review B, Volume 71 (2005) no. 12 | DOI:10.1103/physrevb.71.125342
  • D. P. Nguyen; N. Regnault; R. Ferreira; G. Bastard Electronic continuum states and far-infrared absorption ofInAs∕GaAsquantum dots, Physical Review B, Volume 71 (2005) no. 24 | DOI:10.1103/physrevb.71.245329

Cité par 57 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: