[Photodétection infrarouge avec les boı̂tes quantiques semi-conductrices auto-assemblées]
Les boı̂tes quantiques semi-conductrices auto-assemblées sont des candidates pour le développement d'une nouvelle classe de photodétecteurs quantiques et de matrices fonctionnant dans le moyen infrarouge. Dans cet article, nous décrivons les propriétés des transitions intersousniveaux des boı̂tes quantiques InAs/GaAs. La structure électronique qui tient compte du champ de contrainte dans les boı̂tes est obtenue dans un formalisme
Semiconductor self-assembled quantum dots are potential candidates to develop a new class of midinfrared quantum photodetectors and focal plane arrays. In this article, we present the specific midinfrared properties of InAs/GaAs quantum dots associated with the intersublevel transitions. The electronic structure, which accounts for the strain field in the islands, is obtained within the framework of a three-dimensional 8 band
Philippe Boucaud 1 ; Sébastien Sauvage 1
@article{CRPHYS_2003__4_10_1133_0, author = {Philippe Boucaud and S\'ebastien Sauvage}, title = {Infrared photodetection with semiconductor self-assembled quantum dots}, journal = {Comptes Rendus. Physique}, pages = {1133--1154}, publisher = {Elsevier}, volume = {4}, number = {10}, year = {2003}, doi = {10.1016/j.crhy.2003.10.020}, language = {en}, }
Philippe Boucaud; Sébastien Sauvage. Infrared photodetection with semiconductor self-assembled quantum dots. Comptes Rendus. Physique, ir vision: from chip to image, Volume 4 (2003) no. 10, pp. 1133-1154. doi : 10.1016/j.crhy.2003.10.020. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2003.10.020/
[1] Appl. Phys. Lett., 46 (1986), p. 1156
[2] J. Appl. Phys., 74 (1993), p. R1
[3] Phys. Rev. B, 42 (1990), p. 8947
[4] Phys. Rev. Lett., 77 (1997), p. 3613
[5] Phys. Rev. B, 53 (1996), p. 7899
[6] Phys. Rev. Lett., 62 (1989), p. 2164
[7] Phys. Rev. Lett., 64 (1990), p. 788
[8] Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. K1 Abt. 2B Chemie, 146 (1937), p. 797
[9] Appl. Phys. Lett., 47 (1985), p. 1099
[10] Phys. Rev. Lett., 65 (1990), p. 1020
[11] Solid State Electron., 40 (1996), p. 807
[12] Phys. Rev. B, 52 (1995), p. 11969
[13] Appl. Phys. Lett., 72 (1998), p. 812
[14] Solid State Commun., 92 (1994), p. 437
[15] Solid State Commun., 98 (1996), p. 819
[16] Phys. Rev. B, 57 (1998), p. 4017
[17] Phys. Rev. B, 54 (1996), p. 5604
[18] Phys. Rev. B, 58 (1998), p. 10562
[19] Phys. Rev. B, 54 (1996), p. R2300
[20] Phys. Rev. B, 56 (1997), p. 4047
[21] Appl. Phys. Lett., 71 (1997), p. 3239
[22] Phys. Rev. B, 56 (1997), p. 4696
[23] Phys. Rev. B, 57 (1998), p. 7190
[24] Appl. Phys. Lett., 78 (2002), p. 1258
[25] Phys. Rev. B, 59 (1999) no. 8, p. 5688
[26] Appl. Phys. Lett., 80 (2002), p. 4620
[27] Phys. Rev. Lett., 88 (2002), p. 177402
[28] Phys. Rev. B, 57 (1998), p. R9408
[29] Phys. Status Solidi B, 224 (2001), p. 579
[30] Phys. Rev. Lett., 73 (1994), p. 2252
[31] J. Appl. Phys., 84 (1998), p. 4356
[32] Phys. Rev. B, 60 (1999), p. 15589
[33] Appl. Phys. Lett., 78 (2001), p. 2327
[34] Phys. Rev. B, 59 (1999), p. 9830
[35] Appl. Phys. Lett., 75 (1999), p. 835
[36] Phys. Rev. B, 61 (2000), p. 5562
[37] Phys. Status Solidi B, 224 (2001), p. 595
[38] Phys. Rev. B, 63 (2001), p. 113312
[39] Appl. Phys. Lett., 63 (1993), p. 3203
[40] Phys. Status Solidi, 188 (1995), p. 249
[41] Appl. Phys. Lett., 72 (1998), p. 2265
[42] Appl. Phys. Lett., 73 (1998), p. 96
[43] Phys. Rev., 145 (1966), p. 637
[44] Energie et fonction d'onde des semi-conducteurs, Les editions de physique, 1988
[45] Wave Mechanics Applied to Semiconductor Heterostructures, Les editions de physique, 1992
[46] SIAM J. Matrix Anal. Appl., 17 (1996), p. 401
[47] Appl. Phys. Lett., 72 (1998), p. 1682
[48] S. Sauvage, Propriétés infrarouges des boı̂tes quantiques semi-conductrices InAs/GaAs, Thèse de l'université Paris-XI, Mars 1999
[49] Phys. Rev. B, 44 (1991), p. 10945
[50] Phys. Rev. B, 46 (1992), p. 7260
[51] Phys. Rev. B, 46 (1992), p. 15574
[52] Phys. Rev. B, 56 (1997), p. R4355
[53] Phys. Rev. B, 62 (2000), p. R4809
[54] Phys. Rev. Lett., 83 (1999), p. 4152
[55] Phys. Rev. Lett., 44 (1980), p. 1505
[56] Phys. Rev. B, 57 (1998) no. 12, p. 285
[57] Phys. Rev. B, 59 (1999), p. 5069
[58] Appl. Phys. Lett., 81 (2002), p. 1002
[59] Appl. Phys. Lett., 73 (1998), p. 3818
[60] Properties of Aluminium Gallium Arsenide (S. Hadachi, ed.), INSPEC, London, 1993
[61] Phys. Rev. B, 64 (2001), p. 075315
[62] Phys. Rev. Lett., 88 (2002), p. 146803
[63] Phys. Rev. B, 66 (2002), p. 081308(R)
[64] Phys. Rev. B, 43 (1991), p. 12049
[65] J. Appl. Phys., 86 (1999), p. 6580
[66] Appl. Phys. Lett., 63 (1993), p. 3589
[67] Appl. Phys. Lett., 74 (1999), p. 892
[68] J. Appl. Phys., 79 (1996), p. 446
[69] Quantum Semiconductor Structures, Academic Press, 1991
[70] Appl. Phys. Lett., 78 (2001), p. 3523
[71] IEEE J. Quantum Electron., 39 (2003), p. 459
[72] J. Appl. Phys., 93 (2003), p. 1320
[73] Appl. Phys. Lett., 79 (2001), p. 421
[74] J. Appl. Phys., 89 (2001), p. 5117
[75] Appl. Phys. Lett., 76 (2000), p. 1944
[76] Appl. Phys. Lett., 75 (1999), p. 1428
[77] Appl. Phys. Lett., 79 (2001), p. 2249
[78] Appl. Phys. Lett., 70 (1997), p. 1861
[79] Appl. Phys. Lett., 72 (1998), p. 2020
[80] Appl. Phys. Lett., 73 (1998), p. 2003
[81] Appl. Phys. Lett., 73 (1998), p. 963
[82] Appl. Phys. Lett., 73 (1998), p. 1937
[83] Appl. Phys. Lett., 75 (1999), p. 2719
[84] Appl. Phys. Lett., 78 (2001), p. 79
[85] IEEE J. Quantum Electron., 37 (2001), p. 1412
[86] Appl. Phys. Lett., 79 (2001), p. 421
[87] IEEE J. Quantum Electron., 38 (2002), p. 1234
[88] J. Appl. Phys., 92 (2002), p. 4141
[89] Appl. Phys. Lett., 80 (2002), p. 2490
[90] Appl. Phys. Lett., 79 (2001), p. 3341
[91] Appl. Phys. Lett., 75 (1999), p. 2413
[92] Appl. Phys. Lett., 77 (2000), p. 3224
- Quantum dot infrared photodetectors, Comprehensive Semiconductor Science and Technology (2025), p. 203 | DOI:10.1016/b978-0-323-96027-4.00005-x
- Self-Assembled Quantum Dot Photodetector: A Pathbreaker in the Field of Optoelectronics, Quantum Dot Photodetectors, Volume 30 (2021), p. 289 | DOI:10.1007/978-3-030-74270-6_7
- , Advanced Laser Processing and Manufacturing IV (2020), p. 25 | DOI:10.1117/12.2574968
- Strong Responsivity Enhancement of Quantum Dot‐in‐a‐Well Infrared Photodetectors Using Plasmonic Structures, Advanced Theory and Simulations, Volume 2 (2019) no. 2 | DOI:10.1002/adts.201800143
- Numerical analysis of optical properties of oblate semi-spheroid-shaped quantum dots coupled to wetting layer, Journal of the Optical Society of America B, Volume 32 (2015) no. 6, p. 1097 | DOI:10.1364/josab.32.001097
- One-Dimensional Nature of InAs/InP Quantum Dashes Revealed by Scanning Tunneling Spectroscopy, Nano Letters, Volume 15 (2015) no. 7, p. 4488 | DOI:10.1021/acs.nanolett.5b00963
- GaAs pyramidal quantum dot coupled to wetting layer in an AlGaAs matrix: A strain-free system, Physica E: Low-dimensional Systems and Nanostructures, Volume 68 (2015), p. 215 | DOI:10.1016/j.physe.2015.01.004
- A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer, AIP Advances, Volume 4 (2014) no. 6 | DOI:10.1063/1.4885135
- Application of quantum dot infrared photodetectors in space photoelectric systems, Acta Physica Sinica, Volume 63 (2014) no. 14, p. 148501 | DOI:10.7498/aps.63.148501
- Investigation of in-plane- and z-polarized intersubband transitions in pyramid-shaped InAs/GaAs quantum dots coupled to wetting layer: Size and shape matter, Journal of Applied Physics, Volume 116 (2014) no. 4 | DOI:10.1063/1.4891252
- Plane-Wave Approaches to the Electronic Structure of Semiconductor Nanostructures, Multi-Band Effective Mass Approximations, Volume 94 (2014), p. 155 | DOI:10.1007/978-3-319-01427-2_5
- Effect of the aluminium concentration on the resonant tunnelling time and the laser wavelength of random trimer barrier AlxGa1−xAs superlattices, Physica B: Condensed Matter, Volume 449 (2014), p. 150 | DOI:10.1016/j.physb.2014.05.029
- Wetting layer-assisted modification of in-plane-polarized transitions in strain-free GaAs/AlGaAs quantum dots, Superlattices and Microstructures, Volume 75 (2014), p. 514 | DOI:10.1016/j.spmi.2014.08.008
- Colloidal and Epitaxial Quantum Dot Infrared Photodetectors: Growth, Performance, and Comparison, Wiley Encyclopedia of Electrical and Electronics Engineering (2014), p. 1 | DOI:10.1002/047134608x.w8225
- Optoelectronics, Nanoparticle Technologies - From Lab to Market, Volume 19 (2013), p. 429 | DOI:10.1016/b978-0-12-369550-5.00007-0
- nAnalysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors, Optics Express, Volume 21 (2013) no. 4, p. 4709 | DOI:10.1364/oe.21.004709
- Achievement of tailored laser frequencies by fine-tuning the structural parameters of Fibonacci’s in AlxGa1−xAs/GaAs superlattices, Superlattices and Microstructures, Volume 62 (2013), p. 233 | DOI:10.1016/j.spmi.2013.07.024
- Tuning the dynamic properties of electrons between a quantum well and quantum dots, Journal of Applied Physics, Volume 112 (2012) no. 4 | DOI:10.1063/1.4746789
- Intersublevel Spectroscopy on Single InAs-Quantum Dots by Terahertz Near-Field Microscopy, Nano Letters, Volume 12 (2012) no. 8, p. 4336 | DOI:10.1021/nl302078w
- Atomistic theoretical study of electronic and polarization properties of single and vertically stacked elliptical InAs quantum dots, Physical Review B, Volume 86 (2012) no. 15 | DOI:10.1103/physrevb.86.155444
- Quantum Dot Infrared Photodetectors, Advances in Infrared Photodetectors, Volume 84 (2011), p. 153 | DOI:10.1016/b978-0-12-381337-4.00003-6
- Quantum-Dot Infrared Photodetectors, Comprehensive Semiconductor Science and Technology (2011), p. 452 | DOI:10.1016/b978-0-44-453153-7.00036-5
- Calculation of the quantum efficiency for the absorption on confinement levels in quantum dots, Journal of Nanoparticle Research, Volume 13 (2011) no. 4, p. 1605 | DOI:10.1007/s11051-010-9913-6
- Terahertz and Infrared Quantum Photodetectors, Terahertz Technology, Volume 77 (2011), p. 91 | DOI:10.1007/978-3-642-15793-6_2
- Photodetection around 10 μm wavelength using s-p transitions in InAs/AlAs/AlGaAs self-assembled quantum dots, Journal of Applied Physics, Volume 107 (2010) no. 5 | DOI:10.1063/1.3327002
- Interference effects on bound-to-continuum quantum dot absorption, Journal of Applied Physics, Volume 107 (2010) no. 8 | DOI:10.1063/1.3385313
- Thermal activated carrier transfer between InAs quantum dots in very low density samples, Journal of Physics: Conference Series, Volume 210 (2010), p. 012015 | DOI:10.1088/1742-6596/210/1/012015
- Review of current progress in quantum dot infrared photodetectors, Laser Photonics Reviews, Volume 4 (2010) no. 6, p. 738 | DOI:10.1002/lpor.200900031
- Maximal symmetrization and reduction of fields: Application to wave functions in solid-state nanostructures, Physical Review B, Volume 81 (2010) no. 12 | DOI:10.1103/physrevb.81.125106
- Hot Electron Extraction From Colloidal Quantum Dots, The Journal of Physical Chemistry Letters, Volume 1 (2010) no. 1, p. 45 | DOI:10.1021/jz900022z
- Investigations for InAs/GaAs multilayered quantum-dot structure treated by high energy proton irradiation, Thin Solid Films, Volume 518 (2010) no. 24, p. 7425 | DOI:10.1016/j.tsf.2010.05.009
- Submonolayer quantum dot infrared photodetector, Applied Physics Letters, Volume 94 (2009) no. 11 | DOI:10.1063/1.3095812
- Resonant coupling of quantum dot intersublevel transitions with midinfrared photonic crystal modes, Applied Physics Letters, Volume 95 (2009) no. 4 | DOI:10.1063/1.3189812
- Insight into performance of quantum dot infrared photodetectors, Bulletin of the Polish Academy of Sciences: Technical Sciences, Volume 57 (2009) no. 1 | DOI:10.2478/v10175-010-0111-6
- INTRABAND AUGER EFFECT IN QUANTUM DOT STRUCTURES, International Journal of Modern Physics B, Volume 23 (2009) no. 12n13, p. 2872 | DOI:10.1142/s0217979209062487
- Third-generation infrared photodetector arrays, Journal of Applied Physics, Volume 105 (2009) no. 9 | DOI:10.1063/1.3099572
- Modulated reflectance study of InAs quantum dot stacks embedded in GaAs/AlAs superlattice, Journal of Applied Physics, Volume 106 (2009) no. 6 | DOI:10.1063/1.3212980
- Design and analysis of a new structure of InAs/GaAs QDIP for 8–12 μm infrared windows with low dark current, Journal of Modern Optics, Volume 56 (2009) no. 15, p. 1704 | DOI:10.1080/09500340903289144
- Intraband Auger effect in InAs/InGaAlAs/InP quantum dot structures, Journal of Physics: Conference Series, Volume 167 (2009), p. 012001 | DOI:10.1088/1742-6596/167/1/012001
- Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD), Optics Communications, Volume 282 (2009) no. 17, p. 3499 | DOI:10.1016/j.optcom.2009.05.064
- Two‐dimensional photonic crystals for mid‐infrared quantum dot intersublevel emission, physica status solidi (b), Volume 246 (2009) no. 4, p. 816 | DOI:10.1002/pssb.200880588
- Intraband Auger effect in InAs∕InGaAlAs∕InP quantum dot structures, Applied Physics Letters, Volume 93 (2008) no. 5 | DOI:10.1063/1.2965804
- New material systems for third generation infrared photodetectors, Opto-Electronics Review, Volume 16 (2008) no. 4 | DOI:10.2478/s11772-008-0047-7
- Electronic structure of Mn-doped III-V semiconductor quantum dots, Physical Review B, Volume 78 (2008) no. 19 | DOI:10.1103/physrevb.78.195311
- Influence of quantum well and barrier composition on the spectral behavior of InGaAs quantum dots-in-a-well infrared photodetectors, Applied Physics Letters, Volume 91 (2007) no. 17 | DOI:10.1063/1.2802559
- 640
512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array, IEEE Journal of Quantum Electronics, Volume 43 (2007) no. 3, p. 230 | DOI:10.1109/jqe.2006.889645 - Band structure and impurity effects on optical properties of quantum well and quantum dot infrared photodetectors, Infrared Physics Technology, Volume 50 (2007) no. 2-3, p. 136 | DOI:10.1016/j.infrared.2006.10.031
- Impact of size, shape, and composition on piezoelectric effects and electronic properties ofIn(Ga)As∕GaAsquantum dots, Physical Review B, Volume 76 (2007) no. 20 | DOI:10.1103/physrevb.76.205324
- Ultraweak-Absorption Microscopy of a Single Semiconductor Quantum Dot in the Midinfrared Range, Physical Review Letters, Volume 99 (2007) no. 21 | DOI:10.1103/physrevlett.99.217404
- Intersublevel polaron laser with InAs∕GaAs self-assembled quantum dots, Applied Physics Letters, Volume 88 (2006) no. 6 | DOI:10.1063/1.2169919
- Characteristics and developments of quantum-dot infrared photodetectors, Frontiers of Physics in China, Volume 1 (2006) no. 3, p. 334 | DOI:10.1007/s11467-006-0030-z
- Towards a mid‐infrared polaron laser using InAs/GaAs self‐assembled quantum dots, physica status solidi (b), Volume 243 (2006) no. 15, p. 3895 | DOI:10.1002/pssb.200671517
- Mid-infrared intersublevel absorption of vertically electronically coupled InAs quantum dots, Applied Physics Letters, Volume 87 (2005) no. 17 | DOI:10.1063/1.2117621
- Computer simulation of the electron energy levels in a tetrahedral-shaped quantum dot, European Journal of Physics, Volume 26 (2005) no. 6, p. 1139 | DOI:10.1088/0143-0807/26/6/022
- Intersublevel Absorption in Stacked n-Type Doped Self-Assembled Quantum Dots, Materials Science Forum, Volume 494 (2005), p. 37 | DOI:10.4028/www.scientific.net/msf.494.37
- Intersublevel magnetoabsorption in the valence band ofp-typeInAs∕GaAsandGe∕Siself-assembled quantum dots, Physical Review B, Volume 71 (2005) no. 12 | DOI:10.1103/physrevb.71.125342
- Electronic continuum states and far-infrared absorption ofInAs∕GaAsquantum dots, Physical Review B, Volume 71 (2005) no. 24 | DOI:10.1103/physrevb.71.245329
Cité par 57 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier